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Figure 1: Example interaction of LipLearner. A) Voice2Lip in-situ command registration. The user records a silent speech
command by vocalizing it once, then LipLearner automatically learns to lip-read it with the text recognized from the voice
signal as the label. B) The command then can be used without vocalization, triggered by a silent keyword. LipLearner enables
silent speech recognition which can be used in public settings (e.g., on the subway). Furthermore, it leverages incremental
learning to proactively extend the model’s knowledge when new samples become available.

ABSTRACT

Silent speech interface is a promising technology that enables pri-
vate communications in natural language. However, previous ap-
proaches only support a small and inflexible vocabulary, which leads
to limited expressiveness. We leverage contrastive learning to learn
efficient lipreading representations, enabling few-shot command
customization with minimal user effort. Our model exhibits high
robustness to different lighting, posture, and gesture conditions on
an in-the-wild dataset. For 25-command classification, an F1-score
of 0.8947 is achievable only using one shot, and its performance can
be further boosted by adaptively learning from more data. This gen-
eralizability allowed us to develop a mobile silent speech interface
empowered with on-device fine-tuning and visual keyword spot-
ting. A user study demonstrated that with LipLearner, users could
define their own commands with high reliability guaranteed by an
online incremental learning scheme. Subjective feedback indicated
that our system provides essential functionalities for customizable
silent speech interactions with high usability and learnability.
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1 INTRODUCTION

Conversational agents are becoming increasingly integrated into
our daily lives, serving as a fundamental element of ubiquitous com-
puting and Internet-of-Things (IoT). They facilitate our approaches
to edge devices by providing intuitive and efficient interactions,
allowing people to communicate directly with devices in natural
language. Thanks to the tremendous prevalence of smartphones,
voice assistants [10] have been unprecedentedly popular, giving
users handy access to smartphone functionalities, smart home con-
trol, real-time information, and so forth. Despite the great conve-
nience offered by voice input, there are three major limitations
hampering its usability in practice. Voice User Interfaces (VUIs) 1)
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is not a preferred option in public settings due to the risk of privacy
and security problems, and people may feel awkward talking to
a smartphone in front of others [44], 2) relies on accurate speech
recognition, which can be difficult when the environment is noisy,
and 3) is not available for people with speech disorders.

To tackle the privacy and social acceptance issues in VUIs, Silent
Speech Interface (SSI) has emerged as a promising alternative that
exploits non-acoustic signals to enable speech recognition without
voice. SSI provides seamless and confidential interactions in various
situations, especially in those where voice interaction is inappro-
priate or unavailable. Recent research on SSI has proposed to use
various sensing methods such as Electromyography (EMG) [31, 43],
ultrasound imaging [35], capacitive sensing [40] and video camera
(lipreading) [34, 45, 58] to track the movement of speech articulators
and decode silent speech.

We focus on the last method, which is also known as lipreading,
and augment it with few-shot learning to enable customizable silent
speech commands on smartphones. Compared to other approaches,
lipreading has minimal device requirements but provides rich in-
formation with high temporal and spatial resolution. Nowadays,
smartphones have become the most popular devices and most of
them are equipped with high-quality digital cameras. Therefore,
implementing lipreading systems on smartphones further pushes
forward the convenience and lowers the bar of silent speech input.
On the other hand, as the primary input method on smartphones,
touch gestures can be cumbersome when only single-handed in-
put is available. For such situations, silent speech has been proven
stable and efficient as a supplementary input modality [58].

However, there are three major challenges to building expressive
lipreading systems in practice. First, the data collection process
should minimize the effort for new users to get started with. How-
ever, previous approaches to SSIs, not limited to lipreading-based
approaches, adopt a train-from-scratch model that requires collect-
ing hundreds of samples from real users [34, 57, 58, 69], leading
to excessive mental and physical user burden. Second, such data
collected intensively in controlled laboratory environments causes
a biased model, which can be sensitive to even minor changes in
factors such as lighting, face orientations, and postures, yet there is
little discussion on the model’s ability to generalize to unseen envi-
ronments. Third, the model training process is time-consuming and
requires high-end GPUs, but they are not always accessible to users
for many reasons (requiring internet connection, high computing
cost, privacy concerns of uploading face data to the cloud, etc.).
Adding new commands is even more difficult, because it requires
collecting new data as well as re-training the model from scratch.
As a result, only a limited number of pre-defined commands are
available, and the rich interaction space in silent speech is still
waiting to be mined.

In this research, our goal is to liberate the expensiveness of
lipreading as well as reduce the user burden in the data collection
process. We propose a few-shot lipreading framework that enables
in-situ silent speech command customization. We set off by pre-
training a lipreading encoder model using a contrastive learning
objective, which learns efficient and robust visual speech represen-
tations from public datasets in a semi-supervised manner. We then
employ a simple linear classifier, which can be trained in a few
seconds, to transfer the model to unseen users and words using a
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few-shot learning strategy. Hence, the user can freely define any
phrase in any language, or even non-verbal lip gestures, as a silent
speech command by providing at least one sample. We further min-
imize the user effort of enrolling new commands by introducing
Voice2Lip, a multimodal command registration technique that auto-
matically learns lipreading from voice input in a one-shot manner.
To register a new command, the user just says it aloud, and then
our system will learn the lip movements using the text recognized
from voice signals as labels.

To ensure the applicability of our method in the real world, we
performed a model test under diverse conditions that covered a
broad range of daily scenarios, including different lighting condi-
tions, body postures, and holding gestures. The results show that
our few-shot customization framework could achieve an F1-score
of 0.8947 in unseen conditions with only one shot, significantly
outperforming the conventional user-dependent approach though
the latter used four times more training data. We then built a mobile
application called LipLearner on a commodity smartphone.

To empower LipLearner with reliable hands-free activation, we
propose a visual keyword spotting method that detects the user-
defined keyword from lip movements. Most previous lipreading
interfaces use the mouth opening degree (MOD) [57, 58] as the
only cue to trigger silent speech input, which is prone to misacti-
vation. For example, the system can easily respond to the user’s
unintentional behavior, such as smiling or talking to others. Our
lipreading model encodes lip movements into embedding vectors,
which can be used to identify the keyword from continuous in-
put by computing the cosine similarity. This function can also be
customized and initialized with only a few positive samples (i.e.,
no negative samples required). Moreover, we introduced an online
incremental learning scheme to allow users to continually improve
the performance of the model by providing new samples during in-
teraction. With the efficient lip embeddings, it is trivial to fine-tune
the model by only updating the liner classifier, which significantly
reduces the computing resource demand and thus allows all real-
time customizations and recognitions to be performed on-device
for privacy preservation. Our quantitative user study results show
that LipLearner could recognize 30 commands (20 of which were
user-dependent) with a one-shot accuracy of 81.7%. The perfor-
mance improved gradually while more samples were provided by
the user; finally, 98.8% accuracy was achieved with five samples
per command. Subjective feedback indicates that our system was
easy to use and learn, and the human-AlI interaction experience
was enjoyed by many participants. We have made our machine
learning scripts, models, and the source code of LipLearner (iOS
App) publicly available at https://github.com/rkmtlab/LipLearner
to facilitate further work.

In summary, this paper makes four key contributions:

1. A semi-supervised lipreading encoder that exploits public
datasets to learn efficient visual speech representations and a few-
shot silent speech customization framework to support novel com-
mands with a small number of samples.

2. A model test demonstrating our method works robustly in
a variety of environment and interaction factors, namely lighting
conditions, body postures, and holding gestures.
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3. A mobile application that provides real-time and customizable
silent speech interactions, empowered by a visual keyword spot-
ting method for hands-free activation and an online incremental
learning scheme for extendable vocabulary and performance.

4. A comprehensive user study that evaluated the system’s real-
world performance and usability with customizable commands.

2 RELATED WORK

In this section, we overview related literature in the domains of
silent speech interfaces and relevant machine learning techniques.

2.1 Silent Speech Interface

Silent speech interfaces have been a research topic of vast research
interest for decades, aiming to provide confidential and seamless
communications. Similar to VUIs, SSIs allow users to converse
with computers in natural language, which provides expressive
commands without requiring them to remember complicated ac-
tions or gestures. Existing SSIs are characterized by what kind
of sensing methods and biosignals are used, such as tracking the
movement of speech articulators using electromagnetic articulog-
raphy (EMA) [13, 17, 53], vocal tract imaging using ultrasound
imaging [22, 35], capturing subtle sounds produced by non-audible
murmur (NAM) [59-61] and ingressive speech [15], placing capaci-
tive sensors inside the mouth [33, 40], and capturing facial electrical
activity using electromyography (sEMG) [31, 65]. In the field of
Brain-Computer Interfaces (BCI), researchers seek to decode hu-
man speech directly from the electrical activity of the brain, where
the approaches can be categorized into invasive systems implanted
in the cerebral cortex using electrocorticography (ECoG) [1, 49]
and non-invasive systems attached to the scalp using Electroen-
cephalogram (EEG) [18, 20, 47].

The most related literature to this work is lipreading-based SSIs.
Lipreading is a technology that utilizes a camera to visually cap-
ture movement around the mouth and interpret speech from the
image sequence. HCI researchers have proposed to use devices
such as smartphones [45, 58] and wearable cameras [6, 34, 69] to
provide mobile silent speech interaction, as well as multimodal
approaches such as using silent speech to facilitate eye-gaze-based
selection [57].

The challenges in lipreading stem from the inherent ambiguity
of lip movements. The number of distinguishable visemes (i.e., min-
imum visual speech units) is usually considered to be 10-16 [11, 12,
64], which is much less than the number of phonemes. Researchers
have proposed using ultrasound imaging to track movements of
the oral cavity and tongue as a complementary method for lipread-
ing [30, 36, 37]. While this multimodal approach could significantly
improve the performance of silent speech recognition, ultrasound
imaging devices are cumbersome and impractical for mobile inter-
actions. In contrast, our few-shot lipreading framework enables
customizable and reliable silent speech interactions using only a
commodity mobile phone.

2.2 Machine Learning Approaches to Lipreading
Interfaces

Recent work in the deep learning field has shown the effectiveness
of using deep neural networks (DNN) for lipreading [14, 42, 46],
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while the machine learning paradigms used to build such a model
can have a significant impact on its performance.

As shown in Table 1, we broadly divided previous lipreading
interfaces into two categories: 1) user-dependent models, which col-
lect data from each user and train individual models from scratch,
and 2) off-the-shelf-models, which leverage either public datasets
or pre-collected data to enable user-independent recognition. User-
dependent models offer better performance because they have ob-
tained knowledge from actual users. However, this method imposes
a huge burden on new users, making it a difficult trade-off between
the vocabulary and the amount of training data. Off-the-shelf mod-
els are available immediately without requiring new data. Nonethe-
less, building a model that can generalize to unseen users remains
a huge challenge, as conventional methods either have a small vo-
cabulary [58] or limited accuracy [45, 52]. One workaround is to
use a context-dependent vocabulary to improve accuracy, but it
also limits the number of available commands at a time [57, 58].
Furthermore, a common issue in both user-dependent models and
off-the-shelf models is that the commands are pre-defined by the re-
searchers. Making changes to the command set requires tremendous
training data and computing resources, which are not accessible to
users. Additionally, there is a lack of a practical activating method
to initiate silent speech input. Previous methods such as offline
segmentation [6, 34, 69] or trigger buttons [45, 52] are not feasi-
ble for hands-free real-time interactions, and MOD-based methods
can be vulnerable to misactivations [57, 58]. We propose a novel
few-shot transfer learning paradigm to enable customizable silent
speech commands. LipLearner can achieve promising accuracy with
a small amount of training samples, thus making it possible for the
user to add arbitrary new commands. The few-shot paradigm also
opens the door for visual keyword spotting, which enables using
silent speech to wake up devices.

The generalizability of our model benefits from the contrastive
pre-training pipeline. The weak supervision thereof makes the
model more flexible when transferring to a new data domain, out-
performing supervised approaches [8]. Recent research on using
contrastive learning for lipreading has been focusing on learning
from unlabeled audio-visual data [21, 56]. Although the abundant
information of audio signals provoked an array of inspiring work,
such as synthesizing speech from lips [48, 66]), localizing sounds
in video frames [2, 55], and separating speech signals [16], it could
bring unnecessary complexity to silent speech recognition. Our
work differs from the previous ones in that we leverage a more
straightforward approach that only utilizes the visual modality to
obtain efficient representations with rich semantic information.

2.3 Few-shot Transfer Learning in
Human-Computer Interaction

Few-shot learning (FSL) is a deep learning paradigm, where a model
is first pre-trained on large datasets and then fine-tuned using a
few new samples to generalize to unseen data distributions. Instead
of training the entire model from scratch each time, FSL can in-
crementally obtain new knowledge by only partially updating the
model. HCI researchers have been applying FSL to tasks, such as
sound recognition [29, 67] and human activity recognition [19],
enabling in-situ model fine-tuning in the real world. One of the
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Paradigm Research Device Vocabulary Samples Accuracy  Activation Language
Kimura et al. 2020 [34] Wearable camera 15 40 94% Offline English
Chen 2020 et al. [6] Wearable camera 8 10 84.70% Offline English
User-dependent model s . + .
u et al. 2021 [57] Fixed camera 27 (6") 18 91.63% MOD English
Zhang et al. 2021 [69] Wearable IR camera 54/44 24 90.5%/91.6%  Offline English/Chinese
Sun et al. 2018 [58] Smartphone 44 (6-10T) - 95.40% MOD Chinese
Off-the-shelf model Saitob and Kubc?waka 2019 [52] Smartphone 2? - 73.40% Manual ]apar‘lese
Laxmi and Sabbir 2021 [45] Smartphone 517F - WER 40.9% Manual English
Zhang et al. 2021 [69] Wearable IR camera 54/44 B 54.4%/61.2%  Offline English/Chinese
LipLearner (1-shot) 1 81.7%
Few-shot transfer learning | LipLearner (3-shot) Smartphone 30ttt 3 96.5% Keyword  Arbitrary
LipLearner (5-shot) 5 98.8%

Table 1: Machine learning (ML) paradigms and their specifications in recent lipreading interfaces. The sample column shows the
number of training samples the user needs to record for each command. T The actual vocabulary size depends on the context.
T The vocabulary is word-level. 11 The vocabulary is custom (defined by each user). While some research only conducted
offline experiments or asked the user to trigger the recognizer manually, LipLearner offers online keyword activation and

recognition and is evaluated via a live user study.

most relevant literature is few-shot gesture recognition [68], as ges-
tures and lip movements are both time series human motion signals.
This work utilizes the IMU signals from a smartwatch to enable
users to add custom gestures with a few samples. However, the
model was pre-trained in a supervised manner, which could limit
the model’s generalizability: although the system applied data aug-
mentation (which was performed on a laptop) to obtain more data
for fine-tuning, the 1-shot accuracy was only 55.3% in 12-gesture
classification. Our approach leverages semi-supervised learning
to learn more efficient representations, achieving high accuracy
with a more lightweight architecture that can be deployed on a
smartphone.

3 CONTRASTIVE PRE-TRAINING

To overcome the limitation of vocabulary as well as minimize the
user burden in the data collection process, we leverage contrastive
learning to exploit knowledge from public datasets. In this sec-
tion, we elaborate on the methods and techniques we used in this
pre-training process, including the large-scale lipreading dataset,
the neural network architecture, and the training details. The pre-
trained lipreading encoder is the cornerstone of our few-shot cus-
tomization framework.

3.1 Pre-training Dataset and Preprocessing

We use a public large-scale lipreading dataset, LRW [9], which
comprises video segments extracted from the BBC news, to pre-
train a robust feature extractor for few-shot lipreading. The dataset
consists of up to 1000 utterances of 500 different words, spoken
by hundreds of different speaker, thus providing rich utterances
and face patterns. The speaker’s face is cropped with the mouth
centered using a facial landmark detection algorithm [32] provided
by the Dlib Library [38]. The dataset also covers diverse recording
conditions, such as lighting, background, and camera perspective,
which is expected to enhance the performance of model in real-
world settings.

Nonetheless, there are still discrepancies between the data dis-
tributions of LRW and mobile silent speech scenarios. For instance,
most videos in LRW were captured with fixed or stabilized cameras

from a third person point of view. While in our scenarios, handheld
devices, such as smartphones, inevitably lead to shaking videos, and
their wide-angle lens can cause barrel distortion. Additionally, all
LRW videos are sampled to 29 frames at 25fps (1.16 seconds), which
can make the model sensitive to variations in video duration. To
fill this gap, we apply several data augmentations to generate more
data simulating smartphone videos, namely random crop, random
frame drop, random shaking, and random barrel distortion. Finally,
the frames were converted to grayscale and resized to 88 (H) x 88
(W) pixels.

3.2 Model Architecture

We adopt an encoder model based on the architecture proposed
in [14], which has achieved a state-of-the-art level performance
in lipreading classification tasks. As shown in Figure 2, the neural
network first extracts both spatial and temporal information using
ResNet-18 with a 3D convolutional architecture. After a global pool-
ing layer, the output is reshaped into T X 512 (T denotes time). We
then apply the same word boundary technique described in [14],
which appends a binary vector to indicate the duration of the key-
word. Finally, the feature is processed sequentially using a bidirec-
tional Gated Recurrent Unit (GRU) followed by an average pooling
and a fully connected layer, outputting a 500-dimensional feature
vector.

3.3 Contrastive Learning Pipeline

Conventional supervised learning uses labeled data to learn to
classify the inputs into known classes. The vocabulary of LRW
consists of 500 individual words, which is, however, biased and far
from allowing natural communications with smart assistants (e.g.,
"Question" and "Questions" take up 2 classes, but there are no words
such as "What" for interrogative expression which is essential for a
conversational interface). To overcome this limitation, we leverage
contrastive learning, in which the objective is to learn an embedding
space where similar samples are close to each other while dissimilar
ones are far apart. Thus, we can use the model to find the most
similar command when given samples, even if the samples belong
to previously unseen classes.
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Figure 2: The pre-learning pipeline. (A) We use a 3D CNN encoder to extract a low-dimensional feature vector from lip images.
(B) The contrastive objective maximizes the similarities between utterances of the same words (diagonal elements in the
similarity matrix) while minimizing similarities between utterances of different words (non-diagonal elements in the similarity
matrix). The subscript numbers indicate the class indexes. (C) The learned embedding space.

In our implementation, we use the CLIP objective [50] to let
the model only learn the similarity between samples without re-
membering the exact label. As shown in Figure 2 (B), we randomly
select one sample from each of N (N = batch size) classes as group
A, and then select another N samples from the same classes as
B. Next, the samples are encoded into embeddings, and a cosine
similarity matrix is calculated among the embeddings, scaled by a
temperature parameter 7:

Si’j = sim(A,-, Bj)/’[

Here, we use the same 7 of 0.07 as CLIP. The cosine similarity
sim(,) is measured by the dot product of two L2-normalized embed-
ding vectors A; and Bj, where i, j € [0, N] denote the class indexes.
Note that unlike CLIP used different encoders for text and image
data, our data only has the visual channel. Therefore, the encoders
for the two data groups share the same weights. Diagonal values
in the matrix are similarities between embeddings from the same
class, while non-diagonal values are those between different classes.
The model contrastively learns from the positive N pairs and the
negative N% — N pairs using the InfoNCE loss [63], which averages
the cross entropy loss of group A and group B.

esj-j

L= ST

1 N eSii N
_W(Ziﬂ log % Sij + Zj=1 log )

3.4 Training details

The training starts from pre-trained weights provided by Feng
et al. [14]. We use a ReduceLROnPlateau scheduler with an initial
learning rate of 3x 10™%, which is reduced by a factor of 0.5 once the
validation loss stagnates for 40 epochs. The training loss converged
after 500 epochs, taking around 34 hours across 2 NVIDIA GeForce
RTX 2080 Ti GPUs. We save the model with the least loss on the
validation set for our system.

4 DATA COLLECTION FOR MODEL TEST

There are many variables that could affect the performance of the
lip encoder model. Particularly, we seek to analyze the model’s
robustness against challenges such as different environment con-
figurations and user behaviors. To this end, we set off by collecting
an in-the-wild dataset that covers various practical settings that
simulate mobile interaction scenarios.

4.1 Command Set

First of all, we designed a 25-sentence corpus for silent speech inter-
action (see Figure 3). This command set is intended to contextualize
a scenario where people interact with a conversational assistant to
operate the smartphone, control smart home devices, or find infor-
mation. The phrases are partially selected from the most popular
Alexa commands according to a recent research [54], and the rest
are from Apple’s official guide to Siri [28]. We include both concise
commands and casual expressions, covering all kinds of visemes
and various lengths (3-22 visemes, average length 10.08 + 4.47; we
first translate the words to phonemes by referring to the CMU Pro-
nouncing Dictionary [62] and then map the phonemes into visemes
using Lee and Yook’s approach [39]). Therefore, this corpus is also
phonetically well-balanced and suitable for testing the model’s
capability.

4.2 Recording Conditions

A mobile interface should provide stable performance across dif-
ferent conditions. Especially, we consider that there are three key
factors, namely lighting, posture, and grasp gesture, that pose chal-
lenges to silent speech recognition. In this section, we elaborate on
the various recording conditions contained in the dataset.

4.2.1 Lighting. We change the recording locations and time of day
to achieve different luminance levels. Further investigations show
that those daily scenarios can have a wide light intensity range.
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[Music and Podcasts] [Calls and Texts] [Smart Home]

1. Play 3 6. Call mom 6 11.I'm home 5
2. Stop 4 7. Call Rick 6 12.Turn on lights 9
3. Next 5 8. Text dad 8 13. Close the shades 9
4.Volume up 8 9. Emergency 8 14. Watch Netflix 11
5.Volume down 9 10. Send an e-mail to John 15 15.Warm itup inhere 13
[Information and Navigation] [System Control]

16. What time is it 10 21.Take a picture 9

17. What's the weather 10 22. Open Twitter 9

18. What's the news today 13 23.Turn on flashlight 12 B cornmand ntent
19. Get directions home 14 24. Increase brightness 13

20. Where’s the closest gas station 22

25. Set a timer for 5 minutes 20 . Number of visemes

Figure 3: Command set used for the model test.

Standing Standing » Standing Walking Seated Seated Seated

Right Hand Right Hand Right Hand Right Hand Right Hand Left Hand Both Hands
Outdoor Light Low Light Artificial Light Artificial Light Artificial Light Artificial Light Artificial Light
Cross Lighting Cross Posture Cross Gesture

Figure 4: Illustration of seven conditions during data collection and their corresponding captured views. Selected frames are
processed for privacy protection. The recording conditions are intended for cross-lighting, cross-posture, and cross-gesture

tests.

e Outdoor Daylight: outdoor environment on sunny after-
noons (1:00 PM - 3:00 PM).

o Low Light: laboratory environment on later afternoons (3:00
PM - 5:00 PM), simulated by partially blocking the natural
light.

o Artificial Light: laboratory environment with good lighting
provided, natural light is blocked.

4.2.2  Posture. Participants were asked to record while seated,
standing, or walking. Different postures could cause different levels
of shaking, leading to blurry videos and varying face positions.
o Standing: participants are asked to stand in place.
e Walking: participants are asked to record while walking
along a straight line.

e Seated: participants are seated on a chair with their hands
placed on the armrest.

4.2.3 Grasp Gesture. Participants were asked to hold the smart-
phone with their right hand, left hand, or both hands. Different
grasp gestures result in significant differences in the face orientation
relative to the camera.
¢ Right Hand: the smartphone is held with the user’s right
hand.
o Left Hand: the smartphone is held with the user’s left hand.
e Both Hands: the smartphone is held with the user’s both
hands.
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4.3 Procedure

We recruited 11 participants (4 females and 7 males) from the local
university, all right-handed. Note that to distinguish from the user
study section, participants in this section are identified as speakers
(S1-S11). We used iPhone 11 and iPhone 13 Pro for video recording.
All videos are saved in a MOV format with 1080 (H) x 1920 (W)
pixels at 30 fps. In the collection process, the user is asked to press
the record button at the bottom of the screen and then subvocalize
the command prompt shown on the top. During the speech, the user
needs to keep pressing the recording button and release as soon as
they finish speaking to indicate the beginning and the end of the
recording. Next, the subsequent command will be prompted. To
avoid errors caused by unfamiliarity, we ask the user to read each
of the commands at least once before collecting. If the user did not
read the command correctly or fluently, they can use the rollback
button at the bottom-right corner to record the last command again.

The data collection was approved by the university’s Institutional
Review Board (IRB), and all participants have filled out an IRB-
approved consent form. All participants completed seven collection
sessions, each of which is under a condition that is a combination
of the three key factors (see Figure 4). For each session, participants
were tasked to repeat each of the 25 commands five times. Between
the sessions, participants were allowed to take a one-minute break.
This procedure took around 40 minutes, and we compensated the
participant 1050JPY for their time. In total, 11 participants X 7
sessions X 25 commands X 5 repetitions = 9625 data points were
collected.

5 CUSTOMIZATION PIPELINE AND MODEL
PERFORMANCE

This section presents the few-shot tuning pipeline used to recognize
novel silent speech commands with very few samples. Furthermore,
we performed a comprehensive test to show that our approach is
robust to a wide range of environment configurations.

5.1 Pre-processing and Data Visualization

We extracted the mouth region from our study data using the Me-
diaPipe face detector [41] to identify the face landmarks. For each
frame, we cropped a square region of interest (ROI) with the mouth
centered according to the landmarks, which describes the location
of the mouth. The ROI was converted to a grayscale image and
then resized to 88 (H) x 88 (W) pixels, which follows the same pre-
processing procedure as the LRW dataset. With the pre-trained lip
encoder model, we embedded the ROI into a 500-dimension feature
vector as a semantic representation of the silent speech command.

To better understand how the feature vectors are distributed, we
use the uniform manifold approximation and projection (UMAP)
to visualize a subset of data obtained from a single speaker (510)
in a 2D space. UMAP is an unsupervised dimensionality reduction
technique that clusters the data points without accounting for the
labels in the transformation. As shown in Figure 5, there are 25
distinct clusters corresponding to the 25 commands in the command
set, which are linearly separable. In addition, our model exhibits
a good generalization ability. For example, when zooming into
two of the clusters ("Call mom", and "Volume up"), it was unlikely
to separate the data by the recording condition. Moreover, the
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distance between different conditions was much larger than that
between different commands. Similar observations were also found
in other users’ collected data, which supports our assumption that
the encoder model has learned efficient semantic representation
that can be generalized to unseen speakers and phrases.

5.2 Few-shot Fine-tuning Architecture

Instead of directly computing the similarity, we used a simple linear
logistic regression classifier, which is shown sufficient to achieve
high accuracy with a very small amount of training samples [7, 8],
to learn novel commands. Logistic regression is adept at fitting
linearly separable data, which is suitable for the highly abstracted
features extracted by the encoder model. In the fine-tuning stage,
we freeze the weights of the encoder model and only train the
linear classifier, thus making it trivial to perform in-situ command
customization on mobile devices. Note that the linear classifier
is user-dependent and trained on each user’s data to maximize
accuracy.

To better understand the capability and limitations of the silent
speech representations, we conducted comprehensive experiments
to test the model’s performance in different dimensions.

5.3 Experiment 1: Effect of number of
commands and number of shots

Our in-situ customization framework allows the user to enroll
new commands or provide new samples for existing commands
anytime and anywhere. We used our dataset to simulate this dy-
namic process and investigated how the number of commands and
shots would affect recognition accuracy. In this session, we first
randomly selected M commands (M € {5, 10, 15, 20, 25}). The last
two shots from all conditions are selected as test data. We then
trained the model with N (N € [1..10]) shot(s) randomly selected
from the remaining data, which can belong to different conditions.
Since there are too many possible combinations of data selection,
we repeated the test 1000 times to simulate that training data is
collected over various conditions in daily use. As illustrated in Fig-
ure 6, The model’s performance improved rapidly as the number
of shots increased. In 5-command classification, the F1-score was
0.9574 +0.0286 with only one shot and became 0.9924 + 0.0058 with
three shots of each command. Compared to other input modali-
ties (e.g., gesture, eye gaze), one of the most important advantages
of speech is its expressiveness. Therefore, supporting more com-
mands is crucial to providing better silent speech interactions. The
result showed that although more commands led to slight perfor-
mance degradation, the model still obtains a one-shot F1-score of
0.8947 + 0.0530 when classifying 25 commands and an F1-score of
0.9819 + 0.0120 was achieved with four shots. The standard devi-
ation was also reduced when the number of shots was increased,
indicating that more training samples can improve the model’s
robustness. Thus, the proposed method is promising for recogniz-
ing a large number of silent speech commands, and the model’s
knowledge can be extended by collecting more data in real use.

5.4 Experiment 2: Generalization ability

A common scenario is that the recording setting is significantly
different from where the user actually uses it. The model can learn
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Figure 6: Model test results in F1 measure. Left: Effect of the number of commands and the number of shots. Right: Generalization

ability test.

these differences by asking the user to provide samples in every pos-
sible condition, which however leads to user burden implications.
We believe that our approach can be generalized to completely un-
seen conditions without having such training data. First, we ran a
leave-one-condition-out test by training the classifier on data from

six conditions and testing on data from the one remaining condition.
For each training condition, we randomly selected only one sample
from each class, forming a 6-shot training dataset. This test was
repeated 100 times with random seeds. The box plot in Figure 6 il-
lustrates the distribution of the F1-scores for the 11 participants. To
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Number of shots

Left-out condition 1 2 3 4 5
Cross Lighting Average 0.8954 0.9227 0.9391 0.9463 0.9504
Artificial Light 0.9079 0.9344 0.9509 0.9587 0.9629
Outdoor Daylight 0.8876 0.9125 0.9283 0.9347 0.9391
Low Light 0.8906 0.9212 0.9382 0.9454 0.9493
Cross Posture Average 0.9189 0.9436 0.9595 0.9665 0.9702
Standing 0.9291 0.9504 0.9637 0.9697 0.9717
Walking 0.9183 0.9431 0.9601 0.9669 0.9717
Seated 0.9093 0.9374 0.9546 0.9629 0.9674
Cross Gesture Average 0.9332 0.9555 0.9680 0.9746 0.9780
Right Hand 0.9162 0.9425 0.9568 0.9646 0.9689
Left Hand 0.9456 0.9632 0.9739 0.9797 0.9823
Both Hand 0.9377 0.9609 0.9733 0.9796 0.9828

Table 2: Cross-condition model performance in F1 measure.

compare with the predominant approach, which trains the model
from scratch with considerable data collected from real users, we
built a counterpart model that had the same architecture as our
encoder but was trained in a supervised fashion. The counterpart
model was trained on all data obtained from the training conditions
(i.e., 6 conditions X 5 repetitions = 30 training samples per com-
mand), and it corresponds to the user-dependent train-from-scratch
model in previous literature. Overall, our method achieved an F1-
score of 0.9895 + 0.0078 (averaged over conditions), surpassing the
counterpart model’s score of 0.7147 + 0.2576. This result shows that
our method provides significantly higher recognition accuracy and
is more robust to unseen environments. In addition, the counterpart
model exhibited worse performance especially in the last three con-
ditions: walking posture (F1-score = 0.6930), outdoor light (F1-score
= 0.5510), and low light (F1-score = 0.2134). This indicates that
the accuracy of the conventional train-from-scratch method can be
most severely affected by shaking videos and varying illuminations.
To investigate our method’s capability to cope with this problem,
we further conducted cross-condition experiments with control
variables in the following sections.

5.5 Cross-condition Performance

People use smartphones in different places and at different times,
leading to varying lighting conditions that can significantly affect
the video’s quality. For example, insufficient lighting requires longer
exposure time and higher sensor sensitivity, which can result in
blurry images with noise. In contrast, bright sunlight can cause
overexposed images that lacked highlight details. We select the
data recorded under conditions C1, C2, and C3, corresponding to
outdoor daylight, low light, and artificial light, respectively, while
the keeping posture and grasp gesture are fixed to standing and
right-hand holding. A cross-lighting test was conducted by training
the classifier under two conditions and testing under the other
condition.

The gesture of holding a smartphone depends on personal habits
and the usage scenario. As a result, the camera angle relative to the
face can vary in a wide range, causing different distortion effects
in the image. We ran a cross-gesture test across conditions C3, C4,

and C5, corresponding to standing, walking, and seated postures,
respectively. While the gesture and lighting were set to right hand
and artificial light.

Similarly, posture is also a vital factor in mobile lipreading, taking
a video while walking leads to frequent camera angle changes and
shaking videos with blurry frames. The cross-posture test was
performed across conditions C5, C6, and C7, where the user was
seated under artificial lights but with different gestures, namely
right hand, left hand, and both hands.

All cross-condition tests were repeated 1000 times to mitigate
the randomness of data selection. The results are shown in Table 2
with all conditions showing a similar trend: the more shots, the
better performance. We also find that the cross-lighting condition
was more challenging, as its 3-shot average F1-score was 0.9391,
which was notably lower than the cross-posture and cross-gesture
conditions (F1-score 0.9595 and 0.9680). Overall, we conclude our
framework still shows high and robust performance even in unseen
conditions, which is promising for real-world applications.

6 LIPLEARNER: CUSTOMIZABLE AND
LEARNABLE SILENT SPEECH ASSISTANT

To investigate the usability of our silent speech customization
method, we implemented LipLearner, a mobile application for in-
situ customizable silent speech interaction with online few-shot
learning. In this section, we elaborate on the implementation details
of the application, including visual keyword spotting (KWS), online
learning scheme, and interface design.

6.1 Visual Keyword Spotting

Detecting and segmenting the user’s silent speech has been chal-
lenging in real-time lipreading. Previous researchers have proposed
to activate the recognition algorithm by using the opening degree
of the mouth to identify silent speech [57, 58, 69]. However, this
approach is prone to misactivation because it can be easily confused
when the user is talking to others or unintentionally opens their
mouth.

We propose a few-shot visual keyword spotting method by lever-
aging the efficient representations extracted by our lip encoder
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model. Although KWS as an activation method has been predomi-
nant in voice interactions, to our best knowledge, this technique has
not yet been applied in lipreading-based interfaces. Building a KWS
model usually requires a huge number of positive and negative
training samples, and it is difficult to provide user-defined wake-up
keywords. We exploited the generalization ability of the encoder
model, which is obtained during the contrastive pre-training, to en-
able silent keyword detection with customization and rapid calibra-
tion. To initialize the KWS module, the user registers a customized
phrase as the keyword. Our system then calculates the similarity
between the user’s real-time lip movements with the keyword ut-
terance sample, (i.e., the cosine similarity between the normalized
vectors), thereby spotting when the user is issuing the keyword by
comparing the similarity value with a specified threshold. Thus,

our technique is available with very few keyword samples and no
negative samples.

To determine the optimal threshold for keyword spotting, we
leveraged our dataset to estimate the equal error rate (EER) thresh-
old by discriminating one command (deemed as positive samples)
over the other commands (deemed as negative samples). The EER
results and the corresponding similarity threshold of each com-
mand, averaged over all participants, are shown in Figure 7. Overall,
our method achieved an average EER of 6.75% (standard deviation
2.53%). In addition, the number of visemes in the command had a
negative correlation with the EER (r=0.688), and an even stronger
positive correlation with the EER threshold (r=0.852). This result
suggests that using commands with more visemes (i.e., having more
complicated lip movements) as the wake-up keyword can yield a
lower error rate, but also requires a higher similarity threshold.
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On the other hand, the optimal threshold can vary widely among
individuals. For example, for command No.16 "What time is it", the
optimal thresholds for P9 and P10 were 0.649 and 0.805. To better
understand the data distribution, we visualized the similarity fre-
quency of Play, the command with the lowest EER threshold, and
Where’s the closest gas station the command with the highest EER
threshold, by using the data from S1 and S2.

Based on these observations, we concluded that although a high
keyword spotting accuracy can be achieved using similarity alone,
the practical performance optimal threshold can vary considerably
depending on the length of the phrase in viseme and the pattern of
the user’s speech. Therefore, we adopted a relatively low threshold
of 0.6, which can accept almost all positive samples over all users
and commands in the dataset while still rejecting most negative
samples. We employed another logistic regression binary classifier
to perform a rapid calibration to reduce false positives to discrim-
inate in actual use. As shown in Figure 10 C, the user can report
when a false positive occurs, and the utterance that has misacti-
vated the system will then be learned as negative. Fortunately, as
demonstrated in Figure 8, the similarities between non-speaking
lip movements were significantly higher, making it much easier to
spot the end of the silent speech input. Therefore, we only used a
similarity threshold of 0.65 without additional classifiers. Further-
more, we set a maximum utterance length of 4s, which means the
system will automatically stop recording and perform recognition
when the input is longer than 4s.

In real-time use, we used a sliding window of 30 frames (assum-
ing 1s) to extract feature vectors over time. Suspected keyword
utterances were detected using the similarity threshold and re-
examined using the additional binary classifier. If the utterance is

classified as positive, the system is activated and will recognize
the subsequent input as a command. Since there is usually a pause
between the keyword and the command, the system will start to
detect the end of the utterance after a delay of 1.5 times of window
length (approximately 1.5s).

6.2 System Implementation and Online
Incremental Learning Scheme

We developed an iOS application on an iPhone 13 Pro as a proof-of-
concept prototype of LipLearner. The video stream from the front
camera was first cropped into the ROIs by using the Vision [27]
framework to detect the face and lips. The PyTorch-format lip
encoder model was converted into the Core ML [23] format, which
extracts feature vectors from the ROIs. Finally, we employed the
MLLogisticRegressionClassifier of the Create ML [24] framework to
learn the vectors for keyword spotting and silent speech command
recognition. The system latency was approximately 250ms feature
extraction for 30 frames + 172ms classification ~ 422ms, which is
sufficient for real-time interactions. Note that all recognition and
fine-tuning processing is done on a commodity mobile phone. Thus,
LipLearner can be used without network connections and has all
data stored locally, addressing the privacy concerns in lipreading.

Model tests in section 5.3 have shown our method can exploit
multiple shots for more accurate and robust recognition. To apply
this ability in practice, we designed an incremental learning scheme
that continuously learns from new data to maximize accuracy (Fig-
ure 10). The interaction design of LipLearner can be divided into
the following four stages.
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6.2.1 Initialization phase. To start with, LipLearner will require
the user to set up the KWS system for activation and speech seg-
mentation. The user can record several keyword and non-speaking
samples by holding the record button at the bottom of the screen.
Feature vectors will be extracted from these samples, and the av-
erage vectors of each will be used to calculate the similarity for
detecting keywords and EOS. As described in Section 6, we also
initialized the additional binary classifier with those samples to
re-examine suspected keywords. In the subsequent stages, users
can report misactivations to improve the KWS classifier.

6.2.2 Command registration mode. The user can create novel com-
mands at any time by switching to this mode. To offer a more
accessible command registration, we incorporate speech recogni-
tion to automatically learn new commands from the voice input
using the built-in speech recognizer on iOS 16 [25]. Figure 10 B
illustrates the registration mode. When the user speaks the new
command aloud, LipLearner will record the lip movements and
prompt the text recognized from the voice signal as the label. The
user can make corrections to the text if incorrect, or just manually
input the label if vocalizing is not preferred. Note that to maximize
the accuracy, the registration phase also requires the user to first
wake up the system using the keyword.

6.2.3 Active learning mode. When the quantity of training data
is small (e.g., less than 3 shots), the user can use the system in
the active learning mode to improve the model. The system will
proactively solicit new data by asking the user to confirm whether
the prediction is correct, if not, the user needs to select the correct
label from existing commands. Since we only need to re-train the
logistic regression classifier part of the model, after new samples
are collected, the user can perform on-device fine-tuning at any
time. We report that this process can be finished in 2217ms (10-test
average) with 30 commands X 5 shots = 150 samples as training
data, suggesting that it is possible to update the model in an in-situ
manner.

6.2.4 On-demand Learning Mode. If the user thinks that the model
has already achieved high performance, they can use the on-demand
Learning mode, where the system does not actively collect any data.
Instead, the user can choose to correct and add only the misrecog-
nized samples. This mode requires the least effort and prevents the
classifier model from overfitting.

7 USER STUDY

We conducted a user study to evaluate LipLearner’s usability. This
study is distinct from the model test because the silent speech com-
mand is issued in real-time and segmented by the KWS algorithm.
Furthermore, we wanted to investigate whether our method is able
to recognize user-created commands, which can be meant for differ-
ent intentions with diverse expressions, even in different languages.
Finally, it was also important to observe the user’s behavior in our
human-involved online learning process.

7.1 Participants and Apparatus

We recruited 16 participants experienced in using voice assistants
to use LipLearner. The participants’ native languages are ranging
from English, Chinese(including Mandarin, Cantonese, and Hakka),
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Spanish, Japanese, Malay, and French. This user study also got
approved by the university’s IRB and all participants were paid
2100 JPY for compensation.

An iPhone 13 Pro running the LipLearner application was used
as the apparatus for the user study. The participants were seated in
an armchair and encouraged to hold the phone in the usual way.

7.2 Design and Procedure

The user experience design of LipLearner is shown in Figure 10 and
our user study is consistent with it.

Participants were first given a brief introduction to the system
and the interface, after that they were asked to define their wake-up
keyword in the format of "Hello, X", where "X" is their preferred
name for a smart assistant. Since we have found that phrases with
more visemes can provide better KWS performance, "X" was limited
to those have more than 3 visemes. Next, participants initialized the
system by recording keyword samples and non-speaking samples
three times each. Then participants were given five minutes to
get themselves familiar with LipLearner by using the activation,
command registration, and recognition functions. After participants
had sufficiently practiced, they were asked to define their own
command set in advance. The command set for user study was
divided into three categories based on the level of creative freedom
they permit, listed in ascending order as follows:

(1) Pre-defined. We pre-defined 10 English commands (Table 3
in appendix). Participants were asked to register each com-
mand exactly as it is.

(2) User-described. We illustrated 10 scenarios where smart
assistant could be used (see Figure 9 and Table 4). Participants
were asked to use their own words to describe the command
they prefer to say in the scenario. There were no restrictions
on the language.

(3) User-created. Participants were asked to freely create 10
commands with no restrictions or guidance. (Table 4).

Participants registered the 30 commands in one shot using the

Voice2Lip technique by speaking aloud "Hello [Name], [Command]".
Alternatively, they could also choose to input the label manually in

Figure 9: The user is registering a user-described command
that is defined with the guidance of an illustration.
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cases where they preferred to do so or the speech recognition was
not functioning correctly.

After finishing command registration, participants had a live test
session to test LipLearner’s performance over six trials. During the
test, the experimenter could be directly consulted for clarifications
when desired. In each trial, the participant issued each of the 30
commands once. The command to be issued was prompted on a
27-inch monitor in random order. To evaluate the effectiveness of
the online incremental learning scheme, the application was set to
active learning mode to collect new data from each recognition. If
the recognition result was correct, the participant was asked to tap
the "add sample" button. Otherwise, they were asked to first select

the correct label for the command and then tap the "add sample”
button. Upon completion of each trial, LipLearner would obtain a
new sample for each command. The participant then could update
the model with the new samples by tapping the update button
at the top-right corner. In this test, the recognition results were
shown on the top of the screen without command execution. We
also wanted to verify whether the patterns of lip movements in
voiced (normal) speech and silent speech are different, and whether
this potential difference would lead to inconsistent recognition
performance. To do so, in the first two trials, participants were
asked to say the command either in voiced speech or silent speech.
The order of the voice trial and the silent trial was counterbalanced
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Figure 11: Facial expression registered as emojis by P10.

among participants. To avoid effects on subsequent trials, only the
samples from the silent trial were used for incremental learning as
the second shot.

After the six trials, participants were given 5 to 10 minutes to
use LipLearner freely in on-demand learning mode, where they can
optionally correct misrecognized commands for better performance.
As a proof-of-concept system, we pre-configured the 10 pre-defined
commands with the Shortcuts [26] function on i0S, while the other
20 custom commands would still only show the recognition result.
We encouraged the participants to experience all pre-configured
shortcuts at least once. Finally, they filled out a System Usability
Scale (SUS) [4] questionnaire before attending a semi-structured
interview about the experience of using LipLearner.

8 RESULTS
8.1 Observations

In order to better understand the effect of LipLearner and seek new
insights, we noted down the observations during the user study.

Overall, all participants used the LipLearner smoothly to reg-
ister and issue silent speech commands. They have personalized
LipLearner’s names and defined a wide variety of commands (see
Table 4 in appendix). All non-native English speakers customized
the commands in their native language, and 4 participants used
more than 2 languages. P12 even used 5 languages to customize
commands. This linguistic diversity and promising performance
suggest that LipLearner holds the promise of enabling arbitrary
language for silent speech.

In the case of user-defined commands with given scenarios, al-
though some were relatively similar or even the same (e.g. P2, P5,
P9 used exactly the same command "J£]" in Chinese), the partic-
ipants used the expressions that fit their language and speaking
habits most. As for the user-created commands, the great rich-
ness indicates that LipLearner can exploit much expressiveness of
lipreading.

Some of the participants noticed that LipLearner recognized
correctly even if they did not say the commands exactly the same
as the commands they have registered. For example, the registered
"what’s the weather today" can be used as "What’s the weather like
today". The model shows some certain tolerance in all language
tested, particularly for minor changes in mid-sentence and end-of-
sentence. This nature demonstrates the affinity to real scenarios in
which people will register more than 30 commands and may not
precisely remember every command.

In the free-use session, P10 tried recording four facial expressions
as commands (Figure 11 A) and labeled them with emojis. Since this
interesting behavior was never observed before, the experimenter
noted down the following recognition results of those expressions.
Note that those expressions were recorded in a one-shot manner
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and classified along with the existing 30 commands. Our system cor-
rectly recognized 9 out of 11 tries, and the participant commented,
"It knows what expression I'm trying to make! It’s so fun!" This re-
vealed LipLeaner’s potential in recognizing non-verbal commands,
which will be discussed later in Section 9.1.

8.2 Quantitative Results

8.2.1 Keyword Spotting performance. We logged the number of
misactivations and false negatives in each trial and depicted it
in Figure 12 (A). The FPR began from 0.26% in the first trial and
decreased rapidly as the user reported more misactivations, finally
achieving 0.07% with approximately 7 samples. This result indicates
that although the KWS function was initialized with only positive
samples, it could provide good performance in an early stage and
learns efficiently from negative samples over time.

The average false negative rate (FNR) across 7 trials was 1.43%
without notable changes (standard deviation is 0.45%), because we
did not collect positive samples for keywords except in the initial-
ization phase. Note that a lower similarity threshold can reduce
false negatives. Although it may also lead to a higher false positive
rate (FPR), we think it is admissible given LipLearner’s remarkable
ability to cope with misactivation. However, since determining the
best threshold for all users is impossible, future work should open
this setting to the user’s choice.

8.2.2  Overall Recognition Performance. As shown in Figure 12 (B),
first, we find that the one-shot model whose training data all comes
from voice input had better accuracy in recognizing vocalized ut-
terances (87.29% + 10.42%) than recognizing unvocalized utterances
(81.67%+12.80%). This suggests that voiced speech and silent speech
can have different patterns in lip movements, and learning silent
speech from normal speech led to a slight drop in classification
accuracy. However, in the post-experiment interview, all partici-
pants still expressed a preference for VoiceZLip when registering
new commands, while using the keyboard to input the command
label was considered only when speech recognition fails. There-
fore, we believe that sacrificing approximately 5.6% accuracy in
30-command classification to expedite the command registration
process is acceptable.

Furthermore, LipLearner could efficiently expand its knowledge
with new samples, which is consistent with the result of the model
test. The accuracy rose from 96.04% +4.12% with 3 shots to 98.75% +
2.60% with 5 shots. Notably, 14 out of 16 participants achieved 100%
accuracy within 5 shots. Most participants favored the on-demand
Learning mode because the accuracy was sufficient after finishing
the active learning phase and they felt confident using the system
([P7, P9, P15]). To highlight the effect of the online incremental
scheme, we simulated a situation where the model did not learn
new data during the experiment (Figure 12 (B)). We evaluated the
system with the same data collected from the user study, while the
model was maintained to be the first one-shot model. The result
shows that the performance does not improve as the number of
trials increases, suggesting that the performance improvement was
accomplished solely by incremental learning, instead of the user’s
familiarization of saying the commands.
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(A) KWS performance

—— False positive rate (FNR)
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(B) Overall recognition performance
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Figure 12: The false positive rate and recognition performance of LipLearner.

8.2.3 Per Command Set Recognition Performance. We examined
whether LipLearner could provide consistent performance regard-
less of how the commands were defined by calculating the recogni-
tion accuracy in a per-command-set manner 12. In the first silent
trial, where the model only used one shot for training, LipLearner
achieved better performance on the pre-defined and user-created
commands (average accuracy 0.8646 and 0.8500), while the accu-
racy on user-described commands was lower (average accuracy
0.7646 ). Considering the findings in Section 6, we speculate this
difference is caused by the command length. We observed that in
the user-described part, participants tended to use short but concise
commands to follow the guidance in the illustrations, such as "Call
mom" and "Find my car". In contrast, user-created commands were
longer, more casual, yet full of creativity, e.g., "What are you doing
in my swamp!" and "X > EDEEE A VAR T T LIHIFT
(Post my recent photos to Instagram)". The gap among different
command sets was closed substantially as more samples were pro-
vided. Eventually, all accuracies became above 99% with 5 shots,
demonstrating LipLearner’s ability to learn complicated commands
in different languages efficiently.

Score 2 Score 3 M Score 4 M Score 5

Q1. | think that | would like to use this system frequently.

Q2. [R] | found the system unnecessarily complex.

Q3. | thought the system was easy to use.

Q4. [R] | think that | would need the support of a technical person to be able to use this system.

Q5. | found the various functions in this system were well integrated.

Q6. [R] | thought there was too much inconsistency in this system.

Q7. | would imagine that most people would learn to use this system very quickly.

Q8. [R] | found the system very cumbersome to use.

Q9. | felt very confident using the system.

Q10. [R] | needed to learn a lot of things before | could get going with this system.

\

0% 25% 50% 75% 100%
Figure 13: Usability test results using a 5-scale SUS question-
naire. The horizontal axis is the percentage of responses in
each category. Note that the scores of negatively worded state-

ments (Q2,4,6,8,10) are reversed for better visualization.
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8.3 Qualitative Results

8.3.1 Questionnaire Results. The SUS results suggest generally
positive feedback on usability from participants with an overall
score of 84.8+6.6, which means it is highly usable and acceptable by
users according to Bangor et al’s empirical evaluation [3]. In general,
participants expressed confidence in their ability to effectively use
the system and rated it as highly easy to use and easy to learn. The
details of each SUS question can be found in Figure 13.

8.3.2 Interview feedback. We further transcribed the interviews
and extracted quotes that were related to user experience and opin-
ions about LipLearner. All participants were the first time using a
silent speech interface. For the overall usability, 13 out of 16 partic-
ipants explicitly mentioned that they would like to use LipLearner
in the future: "Now I can use my smart assistant anywhere "[P2].

Participants were also impressed by the accuracy of the model
and the rapid learning process. "It learns so efficiently, [LipLearner]
almost can read all my commands by only listening to me once"[P9],
"It’s amazing that the model can be trained in the blink of an eye."[P15]

All participants have noticed the improvement in recognition
performance, 11 of them found it enjoyable to see the model per-
forms better and better. "I enjoyed teaching the AI model, it brings
me closer to my smart assistant, making it no longer feel like a cold
algorithm."[P7] When asked further how many times they were
willing to teach the model, most answers were around 3-5 times.
P14 even expressed that "I am willing to provide more samples for
each command since I will gradually enrich my command set instead
of immediately registering 30 commands as we did in the user study."

Some participants further provided suggestions on how we could
improve the prototype. Regarding the user interface and interaction,
P8 believed that "The camera view was distracting. I don’t think it
should necessarily be displayed to users." and P13 mentioned "I would
be happy if the confirmation process could also be done using silent
speech.”

While most of the participants were satisfied with using Li-
pLearner in the on-demand learning mode, P6, P7, and P16 all
mentioned about consequences of command execution with mis-
recognition. "The commands have different importance and priority.
It is better to confirm before the important commands, otherwise,
something misrecognized as ’call the police’ may lead to a bad conse-
quence." [P16]

To conclude, subjective feedback indicated that our system was
easy to use and easy to learn, and has provided essential func-
tionalities that allow users to customize their silent speech input
experience in real-time.

9 DISCUSSION
9.1 Lipreading Beyond Speech

LipLearner benefits from the efficient visual speech representations
learned via a contrastive learning strategy. Through our usability
studies, we have demonstrated that our method enables to recog-
nize silent speech with a small amount of training data, and its
excellent performance can generalize to different phrasing, lan-
guages, and even non-verbal lip gestures such as making facial
expressions. This ability push forward lipreading beyond speech.
One potential application is using lipreading for user authentication
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in complement to face recognition, preventing spoofing attacks and
password leakage. The user can define a secret "lip password" by
combining several lip gestures, and our few-shot learning technique
allows the user to change the password with little effort. Such non-
verbal password is difficult to be inferred or remembered by others,
therefore being suitable for high-security authentications, e.g., un-
locking the device or making a payment. Furthermore, although
our model is purposed to learn semantic information, we expect
the semi-supervised visual speech representations also have the
potential to inform user-dependent patterns stemming from subtle
lip movements, making it more unlikely to be reproduced by others.
Investigating the difference among individuals can help further
understand the feasibility of lipreading-based speaker verification.

9.2 Towards Wearable Lipreading

This research is based on mobile interactions because of the preva-
lence of smartphones. However, we believe lipreading technologies
can facilitate communication between humans and computers in a
diversity of scenarios. The recent boom in head-mounted displays
(HMD) based VR/AR applications calls for natural input methods
with high mobility. Lipreading is a promising approach for its ex-
pressiveness and low learning cost, and it can be easily implemented
by embedding a lip-observing camera in the headset. However,
lipreading at such a close distance is not trivial because capturing
the mouth usually requires a fish eye camera, whose distortion
effects can pose challenges for recognition. Yet, placing the cam-
era in the front of face is obtrusive. Our method in contrast has
shown a consistently good performance recognizing from different
points of view. To explore the feasibility of applying LipLearner
in wearable scenarios, we did a preliminary study by mounting a
USB camera on a 3D-printed headset (Figure 14) that captures the
user’s profile face. We collect a dataset from one of the authors
with the same command set used in Section 4, making up a dataset
of 25 commands X 4 repetitions = 100 samples. We evaluated the
system’s performance by running an offline test on a PC, and the
1-shot, 2-shot, and 3-shot accuracies are 0.7941, 0.9387, 1.0 (aver-
aged over 100 random seeds). These early results indicate that our
model can achieve good performance even recognizing profile faces.
Furthermore, the visual KWS technique can free users’ hands and
better make them immersed in the virtual worlds. This preliminary

Figure 14: The device used for the preliminary test on wear-
able lipreading using our few-shot customization framework.
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study demonstrates that our few-shot lipreading framework holds
the promise of extending the dimensions of VR/AR interactions.

9.3 Human-in-the-loop Incremental Learning

LipLearner sheds new light on human-in-the-loop interactions by
focusing on offering a natural and easy way to involve users. Instead
of immediately requiring enormous data to pursue high accuracy,
we introduce a one-shot command registration technique Voice2Lip
to allow rapid initialization. LipLearner proactively solicits new
samples from the user when the data is insufficient, and learns in
an on-demand mode when high accuracy is achieved. Feedback
from the user study suggested that participants enjoyed this human-
Al interaction, and they were willing to help with improving the
Al system during use. We envision that in the future, the design
space of how to engage users to provide knowledge for learnable Al
systems, such as minimizing the disruptions, will be an important
topic in HCL

10 LIMITATIONS AND FUTURE WORK

While LipLearner demonstrates favorable usability, there are several
key limitations that will need to be overcome in the future.

First, there is still room to lessen the physical and cognitive labor
of active learning. Several participants mentioned despite the fact
that they enjoyed helping improve the model in the active learning
mode, it would be better to be able to validate or correct the predic-
tions also using silent speech (e.g., saying "Yes" or "Cancel”) instead
of tapping buttons. Although this feedback also indicates that silent
speech is preferred for its low effort in mobile interactions, the
interaction design should be optimized to better involve the user
in the human-in-the-loop flow.

Second, although our user study observations revealed LipLearner’s
tolerance for minor changes of expressions, this may make it more
difficult to distinguish very similar commands. For example, we
find that one of the common misrecognition is between "Turn on
the light" and "Turn on the flashlight". The problem can be alleviated
by proactively soliciting more samples for low-accuracy commands
or asking the user to rephrase.

Undoubtedly, few-shot learning has enhanced silent speech by
extending the vocabulary capacity and minimizing the user bur-
den in command registration. However, due to the lack of context,
the level of abstraction of lip commands is still relatively low. For
example, two separate commands need to be registered to set the
alarm for 8 AM and 9 AM. We envision that the expressiveness and
abstraction level of LipLearner can be further boosted by training
zero-shot lipreading models jointly with language models such as
GPT3 [5] or T5 [51]. In zero-shot lipreading, the user only has to
prepare a bunch of command candidates they would like to use, and
the model can recognize completely unseen commands by matching
lipreading embeddings with text embeddings.

11 CONCLUSION

This paper presents LipLearner, a lipreading-based silent speech
interface that enables in-situ command customization on mobile
devices. We leverage contrastive learning to build a model to learn
efficient visual speech representations from public datasets, provid-
ing in-situ fine-tuning for unseen users and words using few-shot
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learning. For a preliminary test, we collected a dataset covering
various mobile interaction scenarios to evaluate the model’s perfor-
mance and robustness against lighting conditions, user posture, and
hold gestures. The result showed that our method could provide
consistent performance in different settings, outperforming conven-
tional supervised methods. To investigate usability, we developed
a prototype of LipLearner on iOS by integrating the few-shot cus-
tomization framework with an online incremental learning scheme,
involving the user in the learning process to improve the model on
their demand. We further minimize the labor of command regis-
tration and incorporate speech recognition to automatically learn
new commands from voice input. Through a user study, we demon-
strated that LipLearner also has excellent performance with various
commands defined by participants in different languages. The sub-
jective feedback suggested that LipLearner is easy to use and easy
to learn, and most participants enjoyed the human-Al integrated
interaction. To conclude, our system democratizes silent speech by
offering quick-start on-device lipreading, and it unleashes users’ cre-
ativity with customizable commands. We hope our work can bring
the vision of human-centered Al closer to reality, spotlighting the
importance of intuitive and personalized interaction experiences.
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A USER STUDY COMMAND SET

Table 3: 10 Pre-defined Commands.

Get directions to gas station

Open Twitter

Play some music
Send an email

Set an alarm for 8 am

Take a photo

Turn on focus mode

Turn on the flashlight
What’s the weather today
Show today’s schedule

Zixiong Su, Shitao Fang, and Jun Rekimoto

Table 4: 20 custom commands. B1 to B10 are the user-described commands with given scenarios. C1 to C10 are the user-created

commands.

Participant
Languages
Keyword
B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

C1

Cc2

C3

C4

Participant
Language Used
Keyword
B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

C1

Cc2

C3

C4

Cs

Ce

Cc7

Cc8

c9

C10

Participant
Language used

Keyword
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
C1
C2
C3
C4

P1

French, Japanese, English
Hello, Mirai

FolFEZ

Apelle maman

Ouvre les rideaux

Reserve un ticket d’avion pour le Japon
AR LT

Order food
BOED= 2= A5

6 minutes timer

Where is my car

Monte le chauffage

Read this

—HENT —

Comment ca va?

Tam having a lot of fun

Quand ouvre le cinema

What are you doing in my swamp
Name all the pokemons

Chante une chanson

Create a macro for my lilly heals
‘When is the next HatsuneMiku concert

P5
Chinese, English
Hello, Mamun
Where's my key
Call mom

Open curtains
FiE EHLER
FAT

T

P

RE 6T BRI TN 2R
e
FTFFBRIR

pesilipl
FTHHIEAL
B
SR
TRE TR 4
RO R
PEANSEAEIE

O HE R 2L
A REIR ST
EIEES

P9
Chinese, English

Hello, Tom

T RLZEE
ITRIEATBIG
TIHFEH
WHEEH LR
B

T
HRILEAET
FTHHIE
IR 580
I EAEW
SV R
PR LS R
R ELSGBERE, T
8 sIFIabEARR
ATHEBEE

BEIFHLED
FERER IR A E L
NSRBI
P32 i 37

P2

Chinese, English
Hello, Baymax
AR

T4

HIFEA
ERFINREL D
FAT

O TR SETES
SRE 2
i 65 B
REWR

K25
IR I T
BAEILA

HRIME)
EIRIRIAC ik
WEATHIEHS

AR TR = EFLAE W
7T HiGwEes
HUREAM

P6

English

Hello, Mr. Ha

Can you find my key

Call Mom

Open the curtain

Twant to book a ticket to Tokyo
Turn to sleep mode

Find the nearest restaurant
What's the news today

Set a timer for 6 minutes
Find my car

Turn on the air conditioner

Tell me how to say “sorry” in Japanese

Am I smart?

Delete Wechat

Buy some pork in Amazon
Update my calendar
Where is the bus stop

Call uber to my hometown
Install Google

Buy 1 million stocks

Call my lover

P10
Chinese,English

Hello, Alexa

Find my key

Make a phone call to Mom
Open the curtain

Book a flight ticket

Turn on the light

Make a reservation of restaurants
What's today’s news

Set a timer for six minutes
‘where is my car

Turn on the air conditioner
UL E T
SRR

B — A BRI B
SRRAVELHE
ERERAER

IR & TG

FTHIES NP

M 28T

B AR

WL RARE

P3

Chinese, Japanese, English
Hello, Mugi

Where is my key

Call my mom

Open the curtain

Buy the ticket to tokyo
Turn off the light
Reserve a restaurant
Open Japan today
Count six minutes
Find my car

Turn off the air conditioner
AYEEA
St

patoyakol

Do some research
FKHEE

Eegads:

MR
THEIRAER

FTIFE AL
BRI R

P7

English

Hello, friend

Where’s my key

Call my mom

Open curtain

Find me a ticket to tokyo
Turn off light

Find me some restaurants
Read me some news

Set a 6 minutes timer
Where did I park my car
Turn off the aircon

How to go to my university
Text my mom

Clean my house

Play happy eliminating
Show my calendar
Where’s the nearest hospital
USD to Japanese yen
What'’s gravity

Open camera

Turn off volume

P11
Chinese, English

Hello, Jessica

Where is my key

Make a call

Open the curtain

Book a flight ticket

Turn off light

Find a restaurant

Show news

Set the alarm clock at 6

Find my car

Turn up the temperature

Tell a joke

Turn off camera and microphone
Clean the trash bin

How old are you?

Navigate me to the conference center

Calculate twenty three hundred divided by six

I ]
b5
F 3~ TR T
B

P4

Spanish, English
Hello, David

Donde estan mis llaves
Llama a mama

Abre las cortinas
Compra pasaje de vuelo
Prende las luces

Llama a ubereats

Dime las noticias de hoy
Pon cronometro de seis minutos
Encuentra mi auto
Prende la calefaccion
Reiniciate

Abre traductor de google
Call father

Edit photo

Dim screen to minimun
Delete photo

Lock my screen

Open clash of clans
Download file

Share video

P8
Japanese, English

Hello, David

BAEINPLT
BRTAZLAT

=T vEDHIFT
#E%EFHLT
WRAEMLT

VAL vEFHLT
Za—2A%HAT
6pEDAA3—%LY PLT
HAZELT

WEpE % 215 T

— FIVIEfTH
SHOTPEEHAT
SHORKEHAT

T ATy 7 EBIT

% & TOHEE ?
V5 I EREENTT

K7 %B T

KB & TORBEBAT

HH O 7 b D 2 ) vV RLT
SENEE DIE Y SR EAT

P12

Chinese(Cantonese, Hakka), Malay, Japanese,
English

Hello, David

AR

Call mami

Wake me up at 9

Tolong beli tiket ke jepun

Nak tidur ni

VWBLOL R BT VLT
Pull up today’s news

Set the timer to 6

HEz

KET

I want to be rich

I'will be back

Esok jangan lupa BBQ ye
Edh, b
HobHo
T—AVIEEFLTLE
CHIGSCH L T
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Participant
Language used
Keyword
B1

B2

B3

B4

Bs

Bo

B7

B8

B9

B10

C1

Cc2

C3

C4

Cs5

Ce

Cc7

Cc8

Cc9

C10

P13

Japanese, English

Hello, Alexa

Where is my key?

Hello mom

Good morning

—HBLZVRATHIZE N ?
BXZEHLT

—HEWLVALTVRED

Za—A%HWT

Set Timer

where is my car

TT7AVOEE T

Is Singularity already here?

Make collage lunches better

Write a book that sells well

What is the raw material of these clothes

Grow houseplants

IR % 4 > T

NYIS=H = DNV N= TR ERFAT

BHIDOZViREH X T

HARRA Z8— A5 > THRIZ

O E &N T

P14
Japanese, English
Hello, Alexa

Ilost my key

Call my mom
=7 ERTT
Twant to go to tokyo
Turn off the light
BTV

open news app

Set a timer

Find my car

3 elvae
BV FWTY
i 72

Find my laptop
Misactivate

Tell me a joke

Say hello

What time is it
What's your name
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P15

Chinese, Japanese, English
Hello, Oliver
BHRLEG T
AT LT
IR
Hil)— T ER IS
FAT

HRET LHEEET
SRE L
7580
TR

Ve AL EE
RADREERE AT

H 7 I IR

X5 FOEEAA VYART T MHIFT
F—A VAN

R E A0
HLAEHLT

Hhz LT

4 H R I AT
kD v MiliEEEL T
iy T

P16

English

Hello, Thomas

Looking for my key

Call mom

Draw the curtains

Check for tickets to tokyo
Turn off the lights

Find a restaurant for me
What’s news today
Countdown 6 minutes
Where did I park my car
Warm up here

Check formula 1 schedule
USD to Japanese yen
Check youtube updates
Monitoring my dog at home
Next month’s bills

Play my daily mix

Check out the nearby exhibitions
Call the police

Todo list tomorrow

Open Netflix
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