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Figure 1: Example interaction of LipLearner. A) Voice2Lip in-situ command registration. The user records a silent speech 
command by vocalizing it once, then LipLearner automatically learns to lip-read it with the text recognized from the voice 
signal as the label. B) The command then can be used without vocalization, triggered by a silent keyword. LipLearner enables 
silent speech recognition which can be used in public settings (e.g., on the subway). Furthermore, it leverages incremental 
learning to proactively extend the model’s knowledge when new samples become available. 

ABSTRACT 
Silent speech interface is a promising technology that enables pri-
vate communications in natural language. However, previous ap-
proaches only support a small and infexible vocabulary, which leads 
to limited expressiveness. We leverage contrastive learning to learn 
efcient lipreading representations, enabling few-shot command 
customization with minimal user efort. Our model exhibits high 
robustness to diferent lighting, posture, and gesture conditions on 
an in-the-wild dataset. For 25-command classifcation, an F1-score 
of 0.8947 is achievable only using one shot, and its performance can 
be further boosted by adaptively learning from more data. This gen-
eralizability allowed us to develop a mobile silent speech interface 
empowered with on-device fne-tuning and visual keyword spot-
ting. A user study demonstrated that with LipLearner, users could 
defne their own commands with high reliability guaranteed by an 
online incremental learning scheme. Subjective feedback indicated 
that our system provides essential functionalities for customizable 
silent speech interactions with high usability and learnability. 
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1 INTRODUCTION 
Conversational agents are becoming increasingly integrated into 
our daily lives, serving as a fundamental element of ubiquitous com-
puting and Internet-of-Things (IoT). They facilitate our approaches 
to edge devices by providing intuitive and efcient interactions, 
allowing people to communicate directly with devices in natural 
language. Thanks to the tremendous prevalence of smartphones, 
voice assistants [10] have been unprecedentedly popular, giving 
users handy access to smartphone functionalities, smart home con-
trol, real-time information, and so forth. Despite the great conve-
nience ofered by voice input, there are three major limitations 
hampering its usability in practice. Voice User Interfaces (VUIs) 1) 
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is not a preferred option in public settings due to the risk of privacy 
and security problems, and people may feel awkward talking to 
a smartphone in front of others [44], 2) relies on accurate speech 
recognition, which can be difcult when the environment is noisy, 
and 3) is not available for people with speech disorders. 

To tackle the privacy and social acceptance issues in VUIs, Silent 
Speech Interface (SSI) has emerged as a promising alternative that 
exploits non-acoustic signals to enable speech recognition without 
voice. SSI provides seamless and confdential interactions in various 
situations, especially in those where voice interaction is inappro-
priate or unavailable. Recent research on SSI has proposed to use 
various sensing methods such as Electromyography (EMG) [31, 43], 
ultrasound imaging [35], capacitive sensing [40] and video camera 
(lipreading) [34, 45, 58] to track the movement of speech articulators 
and decode silent speech. 

We focus on the last method, which is also known as lipreading, 
and augment it with few-shot learning to enable customizable silent 
speech commands on smartphones. Compared to other approaches, 
lipreading has minimal device requirements but provides rich in-
formation with high temporal and spatial resolution. Nowadays, 
smartphones have become the most popular devices and most of 
them are equipped with high-quality digital cameras. Therefore, 
implementing lipreading systems on smartphones further pushes 
forward the convenience and lowers the bar of silent speech input. 
On the other hand, as the primary input method on smartphones, 
touch gestures can be cumbersome when only single-handed in-
put is available. For such situations, silent speech has been proven 
stable and efcient as a supplementary input modality [58]. 

However, there are three major challenges to building expressive 
lipreading systems in practice. First, the data collection process 
should minimize the efort for new users to get started with. How-
ever, previous approaches to SSIs, not limited to lipreading-based 
approaches, adopt a train-from-scratch model that requires collect-
ing hundreds of samples from real users [34, 57, 58, 69], leading 
to excessive mental and physical user burden. Second, such data 
collected intensively in controlled laboratory environments causes 
a biased model, which can be sensitive to even minor changes in 
factors such as lighting, face orientations, and postures, yet there is 
little discussion on the model’s ability to generalize to unseen envi-
ronments. Third, the model training process is time-consuming and 
requires high-end GPUs, but they are not always accessible to users 
for many reasons (requiring internet connection, high computing 
cost, privacy concerns of uploading face data to the cloud, etc.). 
Adding new commands is even more difcult, because it requires 
collecting new data as well as re-training the model from scratch. 
As a result, only a limited number of pre-defned commands are 
available, and the rich interaction space in silent speech is still 
waiting to be mined. 

In this research, our goal is to liberate the expensiveness of 
lipreading as well as reduce the user burden in the data collection 
process. We propose a few-shot lipreading framework that enables 
in-situ silent speech command customization. We set of by pre-
training a lipreading encoder model using a contrastive learning 
objective, which learns efcient and robust visual speech represen-
tations from public datasets in a semi-supervised manner. We then 
employ a simple linear classifer, which can be trained in a few 
seconds, to transfer the model to unseen users and words using a 

few-shot learning strategy. Hence, the user can freely defne any 
phrase in any language, or even non-verbal lip gestures, as a silent 
speech command by providing at least one sample. We further min-
imize the user efort of enrolling new commands by introducing 
Voice2Lip, a multimodal command registration technique that auto-
matically learns lipreading from voice input in a one-shot manner. 
To register a new command, the user just says it aloud, and then 
our system will learn the lip movements using the text recognized 
from voice signals as labels. 

To ensure the applicability of our method in the real world, we 
performed a model test under diverse conditions that covered a 
broad range of daily scenarios, including diferent lighting condi-
tions, body postures, and holding gestures. The results show that 
our few-shot customization framework could achieve an F1-score 
of 0.8947 in unseen conditions with only one shot, signifcantly 
outperforming the conventional user-dependent approach though 
the latter used four times more training data. We then built a mobile 
application called LipLearner on a commodity smartphone. 

To empower LipLearner with reliable hands-free activation, we 
propose a visual keyword spotting method that detects the user-
defned keyword from lip movements. Most previous lipreading 
interfaces use the mouth opening degree (MOD) [57, 58] as the 
only cue to trigger silent speech input, which is prone to misacti-
vation. For example, the system can easily respond to the user’s 
unintentional behavior, such as smiling or talking to others. Our 
lipreading model encodes lip movements into embedding vectors, 
which can be used to identify the keyword from continuous in-
put by computing the cosine similarity. This function can also be 
customized and initialized with only a few positive samples (i.e., 
no negative samples required). Moreover, we introduced an online 
incremental learning scheme to allow users to continually improve 
the performance of the model by providing new samples during in-
teraction. With the efcient lip embeddings, it is trivial to fne-tune 
the model by only updating the liner classifer, which signifcantly 
reduces the computing resource demand and thus allows all real-
time customizations and recognitions to be performed on-device 
for privacy preservation. Our quantitative user study results show 
that LipLearner could recognize 30 commands (20 of which were 
user-dependent) with a one-shot accuracy of 81.7%. The perfor-
mance improved gradually while more samples were provided by 
the user; fnally, 98.8% accuracy was achieved with fve samples 
per command. Subjective feedback indicates that our system was 
easy to use and learn, and the human-AI interaction experience 
was enjoyed by many participants. We have made our machine 
learning scripts, models, and the source code of LipLearner (iOS 
App) publicly available at https://github.com/rkmtlab/LipLearner 
to facilitate further work. 

In summary, this paper makes four key contributions: 
1. A semi-supervised lipreading encoder that exploits public 

datasets to learn efcient visual speech representations and a few-
shot silent speech customization framework to support novel com-
mands with a small number of samples. 

2. A model test demonstrating our method works robustly in 
a variety of environment and interaction factors, namely lighting 
conditions, body postures, and holding gestures. 
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3. A mobile application that provides real-time and customizable 
silent speech interactions, empowered by a visual keyword spot-
ting method for hands-free activation and an online incremental 
learning scheme for extendable vocabulary and performance. 

4. A comprehensive user study that evaluated the system’s real-
world performance and usability with customizable commands. 

2 RELATED WORK 
In this section, we overview related literature in the domains of 
silent speech interfaces and relevant machine learning techniques. 

2.1 Silent Speech Interface 
Silent speech interfaces have been a research topic of vast research 
interest for decades, aiming to provide confdential and seamless 
communications. Similar to VUIs, SSIs allow users to converse 
with computers in natural language, which provides expressive 
commands without requiring them to remember complicated ac-
tions or gestures. Existing SSIs are characterized by what kind 
of sensing methods and biosignals are used, such as tracking the 
movement of speech articulators using electromagnetic articulog-
raphy (EMA) [13, 17, 53], vocal tract imaging using ultrasound 
imaging [22, 35], capturing subtle sounds produced by non-audible 
murmur (NAM) [59–61] and ingressive speech [15], placing capaci-
tive sensors inside the mouth [33, 40], and capturing facial electrical 
activity using electromyography (sEMG) [31, 65]. In the feld of 
Brain-Computer Interfaces (BCI), researchers seek to decode hu-
man speech directly from the electrical activity of the brain, where 
the approaches can be categorized into invasive systems implanted 
in the cerebral cortex using electrocorticography (ECoG) [1, 49] 
and non-invasive systems attached to the scalp using Electroen-
cephalogram (EEG) [18, 20, 47]. 

The most related literature to this work is lipreading-based SSIs. 
Lipreading is a technology that utilizes a camera to visually cap-
ture movement around the mouth and interpret speech from the 
image sequence. HCI researchers have proposed to use devices 
such as smartphones [45, 58] and wearable cameras [6, 34, 69] to 
provide mobile silent speech interaction, as well as multimodal 
approaches such as using silent speech to facilitate eye-gaze-based 
selection [57]. 

The challenges in lipreading stem from the inherent ambiguity 
of lip movements. The number of distinguishable visemes (i.e., min-
imum visual speech units) is usually considered to be 10-16 [11, 12, 
64], which is much less than the number of phonemes. Researchers 
have proposed using ultrasound imaging to track movements of 
the oral cavity and tongue as a complementary method for lipread-
ing [30, 36, 37]. While this multimodal approach could signifcantly 
improve the performance of silent speech recognition, ultrasound 
imaging devices are cumbersome and impractical for mobile inter-
actions. In contrast, our few-shot lipreading framework enables 
customizable and reliable silent speech interactions using only a 
commodity mobile phone. 

2.2 Machine Learning Approaches to Lipreading 
Interfaces 

Recent work in the deep learning feld has shown the efectiveness 
of using deep neural networks (DNN) for lipreading [14, 42, 46], 

while the machine learning paradigms used to build such a model 
can have a signifcant impact on its performance. 

As shown in Table 1, we broadly divided previous lipreading 
interfaces into two categories: 1) user-dependent models, which col-
lect data from each user and train individual models from scratch, 
and 2) of-the-shelf-models, which leverage either public datasets 
or pre-collected data to enable user-independent recognition. User-
dependent models ofer better performance because they have ob-
tained knowledge from actual users. However, this method imposes 
a huge burden on new users, making it a difcult trade-of between 
the vocabulary and the amount of training data. Of-the-shelf mod-
els are available immediately without requiring new data. Nonethe-
less, building a model that can generalize to unseen users remains 
a huge challenge, as conventional methods either have a small vo-
cabulary [58] or limited accuracy [45, 52]. One workaround is to 
use a context-dependent vocabulary to improve accuracy, but it 
also limits the number of available commands at a time [57, 58]. 
Furthermore, a common issue in both user-dependent models and 
of-the-shelf models is that the commands are pre-defned by the re-
searchers. Making changes to the command set requires tremendous 
training data and computing resources, which are not accessible to 
users. Additionally, there is a lack of a practical activating method 
to initiate silent speech input. Previous methods such as ofine 
segmentation [6, 34, 69] or trigger buttons [45, 52] are not feasi-
ble for hands-free real-time interactions, and MOD-based methods 
can be vulnerable to misactivations [57, 58]. We propose a novel 
few-shot transfer learning paradigm to enable customizable silent 
speech commands. LipLearner can achieve promising accuracy with 
a small amount of training samples, thus making it possible for the 
user to add arbitrary new commands. The few-shot paradigm also 
opens the door for visual keyword spotting, which enables using 
silent speech to wake up devices. 

The generalizability of our model benefts from the contrastive 
pre-training pipeline. The weak supervision thereof makes the 
model more fexible when transferring to a new data domain, out-
performing supervised approaches [8]. Recent research on using 
contrastive learning for lipreading has been focusing on learning 
from unlabeled audio-visual data [21, 56]. Although the abundant 
information of audio signals provoked an array of inspiring work, 
such as synthesizing speech from lips [48, 66]), localizing sounds 
in video frames [2, 55], and separating speech signals [16], it could 
bring unnecessary complexity to silent speech recognition. Our 
work difers from the previous ones in that we leverage a more 
straightforward approach that only utilizes the visual modality to 
obtain efcient representations with rich semantic information. 

2.3 Few-shot Transfer Learning in 
Human-Computer Interaction 

Few-shot learning (FSL) is a deep learning paradigm, where a model 
is frst pre-trained on large datasets and then fne-tuned using a 
few new samples to generalize to unseen data distributions. Instead 
of training the entire model from scratch each time, FSL can in-
crementally obtain new knowledge by only partially updating the 
model. HCI researchers have been applying FSL to tasks, such as 
sound recognition [29, 67] and human activity recognition [19], 
enabling in-situ model fne-tuning in the real world. One of the 
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Paradigm Research Device Vocabulary Samples Accuracy Activation Language 
Kimura et al. 2020 [34] Wearable camera 15 40 94% Ofine English 

User-dependent model Chen 2020 et al. [6] 
Su et al. 2021 [57] 

Wearable camera 
Fixed camera 

8 
27 (6†) 

10 
18 

84.70% 
91.63% 

Ofine 
MOD 

English 
English 

Zhang et al. 2021 [69] Wearable IR camera 54/44 24 90.5%/91.6% Ofine English/Chinese 
Sun et al. 2018 [58] Smartphone 44 (6-10†) - 95.40% MOD Chinese 

Of-the-shelf model Saitoh and Kubowaka 2019 [52] 
Laxmi and Sabbir 2021 [45] 

Smartphone 
Smartphone 

25 
51†† 

-
-

73.40% 
WER 40.9% 

Manual 
Manual 

Japanese 
English 

Zhang et al. 2021 [69] Wearable IR camera 54/44 - 54.4%/61.2% Ofine English/Chinese 

Few-shot transfer learning 
LipLearner (1-shot) 
LipLearner (3-shot) 
LipLearner (5-shot) 

Smartphone 30††† 
1 
3 
5 

81.7% 
96.5% 
98.8% 

Keyword Arbitrary 

Table 1: Machine learning (ML) paradigms and their specifcations in recent lipreading interfaces. The sample column shows the 
number of training samples the user needs to record for each command. † The actual vocabulary size depends on the context. 
†† The vocabulary is word-level. ††† The vocabulary is custom (defned by each user). While some research only conducted 
ofline experiments or asked the user to trigger the recognizer manually, LipLearner ofers online keyword activation and 
recognition and is evaluated via a live user study. 

most relevant literature is few-shot gesture recognition [68], as ges-
tures and lip movements are both time series human motion signals. 
This work utilizes the IMU signals from a smartwatch to enable 
users to add custom gestures with a few samples. However, the 
model was pre-trained in a supervised manner, which could limit 
the model’s generalizability: although the system applied data aug-
mentation (which was performed on a laptop) to obtain more data 
for fne-tuning, the 1-shot accuracy was only 55.3% in 12-gesture 
classifcation. Our approach leverages semi-supervised learning 
to learn more efcient representations, achieving high accuracy 
with a more lightweight architecture that can be deployed on a 
smartphone. 

3 CONTRASTIVE PRE-TRAINING 
To overcome the limitation of vocabulary as well as minimize the 
user burden in the data collection process, we leverage contrastive 
learning to exploit knowledge from public datasets. In this sec-
tion, we elaborate on the methods and techniques we used in this 
pre-training process, including the large-scale lipreading dataset, 
the neural network architecture, and the training details. The pre-
trained lipreading encoder is the cornerstone of our few-shot cus-
tomization framework. 

3.1 Pre-training Dataset and Preprocessing 
We use a public large-scale lipreading dataset, LRW [9], which 
comprises video segments extracted from the BBC news, to pre-
train a robust feature extractor for few-shot lipreading. The dataset 
consists of up to 1000 utterances of 500 diferent words, spoken 
by hundreds of diferent speaker, thus providing rich utterances 
and face patterns. The speaker’s face is cropped with the mouth 
centered using a facial landmark detection algorithm [32] provided 
by the Dlib Library [38]. The dataset also covers diverse recording 
conditions, such as lighting, background, and camera perspective, 
which is expected to enhance the performance of model in real-
world settings. 

Nonetheless, there are still discrepancies between the data dis-
tributions of LRW and mobile silent speech scenarios. For instance, 
most videos in LRW were captured with fxed or stabilized cameras 

from a third person point of view. While in our scenarios, handheld 
devices, such as smartphones, inevitably lead to shaking videos, and 
their wide-angle lens can cause barrel distortion. Additionally, all 
LRW videos are sampled to 29 frames at 25fps (1.16 seconds), which 
can make the model sensitive to variations in video duration. To 
fll this gap, we apply several data augmentations to generate more 
data simulating smartphone videos, namely random crop, random 
frame drop, random shaking, and random barrel distortion. Finally, 
the frames were converted to grayscale and resized to 88 (H) × 88 
(W) pixels. 

3.2 Model Architecture 
We adopt an encoder model based on the architecture proposed 
in [14], which has achieved a state-of-the-art level performance 
in lipreading classifcation tasks. As shown in Figure 2, the neural 
network frst extracts both spatial and temporal information using 
ResNet-18 with a 3D convolutional architecture. After a global pool-
ing layer, the output is reshaped into � × 512 (T denotes time). We 
then apply the same word boundary technique described in [14], 
which appends a binary vector to indicate the duration of the key-
word. Finally, the feature is processed sequentially using a bidirec-
tional Gated Recurrent Unit (GRU) followed by an average pooling 
and a fully connected layer, outputting a 500-dimensional feature 
vector. 

3.3 Contrastive Learning Pipeline 
Conventional supervised learning uses labeled data to learn to 
classify the inputs into known classes. The vocabulary of LRW 
consists of 500 individual words, which is, however, biased and far 
from allowing natural communications with smart assistants (e.g., 
"Question" and "Questions" take up 2 classes, but there are no words 
such as "What" for interrogative expression which is essential for a 
conversational interface). To overcome this limitation, we leverage 
contrastive learning, in which the objective is to learn an embedding 
space where similar samples are close to each other while dissimilar 
ones are far apart. Thus, we can use the model to fnd the most 
similar command when given samples, even if the samples belong 
to previously unseen classes. 
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Figure 2: The pre-learning pipeline. (A) We use a 3D CNN encoder to extract a low-dimensional feature vector from lip images. 
(B) The contrastive objective maximizes the similarities between utterances of the same words (diagonal elements in the 
similarity matrix) while minimizing similarities between utterances of diferent words (non-diagonal elements in the similarity 
matrix). The subscript numbers indicate the class indexes. (C) The learned embedding space. 

In our implementation, we use the CLIP objective [50] to let 
the model only learn the similarity between samples without re-
membering the exact label. As shown in Figure 2 (B), we randomly 
select one sample from each of � (� = batch size) classes as group 
�, and then select another � samples from the same classes as 
�. Next, the samples are encoded into embeddings, and a cosine 
similarity matrix is calculated among the embeddings, scaled by a 
temperature parameter � : 

��, � = ���(�� , � � )/� 

Here, we use the same � of 0.07 as CLIP. The cosine similarity 
sim(,) is measured by the dot product of two L2-normalized embed-
ding vectors �� and � � , where �, � ∈ [0, � ] denote the class indexes. 
Note that unlike CLIP used diferent encoders for text and image 
data, our data only has the visual channel. Therefore, the encoders 
for the two data groups share the same weights. Diagonal values 
in the matrix are similarities between embeddings from the same 
class, while non-diagonal values are those between diferent classes. 
The model contrastively learns from the positive � pairs and the 
negative � 2 − � pairs using the InfoNCE loss [63], which averages 
the cross entropy loss of group � and group �. 

1 ∑� ���,� ∑� �� �,� 
L = − ( log Í + log Í )

2� �=1 
� �

��,� �=1 
� �

��,� 

3.4 Training details 
The training starts from pre-trained weights provided by Feng 
et al. [14]. We use a ReduceLROnPlateau scheduler with an initial 
learning rate of 3×10−4, which is reduced by a factor of 0.5 once the 
validation loss stagnates for 40 epochs. The training loss converged 
after 500 epochs, taking around 34 hours across 2 NVIDIA GeForce 
RTX 2080 Ti GPUs. We save the model with the least loss on the 
validation set for our system. 

4 DATA COLLECTION FOR MODEL TEST 
There are many variables that could afect the performance of the 
lip encoder model. Particularly, we seek to analyze the model’s 
robustness against challenges such as diferent environment con-
fgurations and user behaviors. To this end, we set of by collecting 
an in-the-wild dataset that covers various practical settings that 
simulate mobile interaction scenarios. 

4.1 Command Set 
First of all, we designed a 25-sentence corpus for silent speech inter-
action (see Figure 3). This command set is intended to contextualize 
a scenario where people interact with a conversational assistant to 
operate the smartphone, control smart home devices, or fnd infor-
mation. The phrases are partially selected from the most popular 
Alexa commands according to a recent research [54], and the rest 
are from Apple’s ofcial guide to Siri [28]. We include both concise 
commands and casual expressions, covering all kinds of visemes 
and various lengths (3-22 visemes, average length 10.08 ± 4.47; we 
frst translate the words to phonemes by referring to the CMU Pro-
nouncing Dictionary [62] and then map the phonemes into visemes 
using Lee and Yook’s approach [39]). Therefore, this corpus is also 
phonetically well-balanced and suitable for testing the model’s 
capability. 

4.2 Recording Conditions 
A mobile interface should provide stable performance across dif-
ferent conditions. Especially, we consider that there are three key 
factors, namely lighting, posture, and grasp gesture, that pose chal-
lenges to silent speech recognition. In this section, we elaborate on 
the various recording conditions contained in the dataset. 

4.2.1 Lighting. We change the recording locations and time of day 
to achieve diferent luminance levels. Further investigations show 
that those daily scenarios can have a wide light intensity range. 
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[Music and Podcasts]
1. Play
2. Stop
3. Next
4. Volume up
5. Volume down

[Calls and Texts]
6. Call mom
7. Call Rick
8. Text dad
9. Emergency 
10. Send an e-mail to John 

[Smart Home]
11. I’m home
12. Turn on lights 
13. Close the shades
14. Watch Net�ix 
15. Warm it up in here

[System Control]
21. Take a picture
22. Open Twitter 
23. Turn on �ashlight
24. Increase brightness
25. Set a timer for 5 minutes

6
6
8
8

15

5
9
9

11
13

3
4
5
8
9

10
10
13
14
22

9
9

12
13
20

[Information and Navigation]
16. What time is it
17. What’s the weather
18. What’s the news today
19. Get directions home
20. Where’s the closest gas station

Command intent

Number of visemes

Figure 3: Command set used for the model test. 

Figure 4: Illustration of seven conditions during data collection and their corresponding captured views. Selected frames are 
processed for privacy protection. The recording conditions are intended for cross-lighting, cross-posture, and cross-gesture 
tests. 

• Outdoor Daylight: outdoor environment on sunny after-
noons (1:00 PM - 3:00 PM). 

• Low Light: laboratory environment on later afternoons (3:00 
PM - 5:00 PM), simulated by partially blocking the natural 
light. 

• Artifcial Light: laboratory environment with good lighting 
provided, natural light is blocked. 

4.2.2 Posture. Participants were asked to record while seated, 
standing, or walking. Diferent postures could cause diferent levels 
of shaking, leading to blurry videos and varying face positions. 

• Standing: participants are asked to stand in place. 
• Walking: participants are asked to record while walking 
along a straight line. 

• Seated: participants are seated on a chair with their hands 
placed on the armrest. 

4.2.3 Grasp Gesture. Participants were asked to hold the smart-
phone with their right hand, left hand, or both hands. Diferent 
grasp gestures result in signifcant diferences in the face orientation 
relative to the camera. 

• Right Hand: the smartphone is held with the user’s right 
hand. 

• Left Hand: the smartphone is held with the user’s left hand. 
• Both Hands: the smartphone is held with the user’s both 
hands. 
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4.3 Procedure 
We recruited 11 participants (4 females and 7 males) from the local 
university, all right-handed. Note that to distinguish from the user 
study section, participants in this section are identifed as speakers 
(S1-S11). We used iPhone 11 and iPhone 13 Pro for video recording. 
All videos are saved in a MOV format with 1080 (H) × 1920 (W) 
pixels at 30 fps. In the collection process, the user is asked to press 
the record button at the bottom of the screen and then subvocalize 
the command prompt shown on the top. During the speech, the user 
needs to keep pressing the recording button and release as soon as 
they fnish speaking to indicate the beginning and the end of the 
recording. Next, the subsequent command will be prompted. To 
avoid errors caused by unfamiliarity, we ask the user to read each 
of the commands at least once before collecting. If the user did not 
read the command correctly or fuently, they can use the rollback 
button at the bottom-right corner to record the last command again. 

The data collection was approved by the university’s Institutional 
Review Board (IRB), and all participants have flled out an IRB-
approved consent form. All participants completed seven collection 
sessions, each of which is under a condition that is a combination 
of the three key factors (see Figure 4). For each session, participants 
were tasked to repeat each of the 25 commands fve times. Between 
the sessions, participants were allowed to take a one-minute break. 
This procedure took around 40 minutes, and we compensated the 
participant 1050JPY for their time. In total, 11 participants × 7 
sessions × 25 commands × 5 repetitions = 9625 data points were 
collected. 

5 CUSTOMIZATION PIPELINE AND MODEL 
PERFORMANCE 

This section presents the few-shot tuning pipeline used to recognize 
novel silent speech commands with very few samples. Furthermore, 
we performed a comprehensive test to show that our approach is 
robust to a wide range of environment confgurations. 

5.1 Pre-processing and Data Visualization 
We extracted the mouth region from our study data using the Me-
diaPipe face detector [41] to identify the face landmarks. For each 
frame, we cropped a square region of interest (ROI) with the mouth 
centered according to the landmarks, which describes the location 
of the mouth. The ROI was converted to a grayscale image and 
then resized to 88 (H) × 88 (W) pixels, which follows the same pre-
processing procedure as the LRW dataset. With the pre-trained lip 
encoder model, we embedded the ROI into a 500-dimension feature 
vector as a semantic representation of the silent speech command. 

To better understand how the feature vectors are distributed, we 
use the uniform manifold approximation and projection (UMAP) 
to visualize a subset of data obtained from a single speaker (S10) 
in a 2D space. UMAP is an unsupervised dimensionality reduction 
technique that clusters the data points without accounting for the 
labels in the transformation. As shown in Figure 5, there are 25 
distinct clusters corresponding to the 25 commands in the command 
set, which are linearly separable. In addition, our model exhibits 
a good generalization ability. For example, when zooming into 
two of the clusters ("Call mom", and "Volume up"), it was unlikely 
to separate the data by the recording condition. Moreover, the 

distance between diferent conditions was much larger than that 
between diferent commands. Similar observations were also found 
in other users’ collected data, which supports our assumption that 
the encoder model has learned efcient semantic representation 
that can be generalized to unseen speakers and phrases. 

5.2 Few-shot Fine-tuning Architecture 
Instead of directly computing the similarity, we used a simple linear 
logistic regression classifer, which is shown sufcient to achieve 
high accuracy with a very small amount of training samples [7, 8], 
to learn novel commands. Logistic regression is adept at ftting 
linearly separable data, which is suitable for the highly abstracted 
features extracted by the encoder model. In the fne-tuning stage, 
we freeze the weights of the encoder model and only train the 
linear classifer, thus making it trivial to perform in-situ command 
customization on mobile devices. Note that the linear classifer 
is user-dependent and trained on each user’s data to maximize 
accuracy. 

To better understand the capability and limitations of the silent 
speech representations, we conducted comprehensive experiments 
to test the model’s performance in diferent dimensions. 

5.3 Experiment 1: Efect of number of 
commands and number of shots 

Our in-situ customization framework allows the user to enroll 
new commands or provide new samples for existing commands 
anytime and anywhere. We used our dataset to simulate this dy-
namic process and investigated how the number of commands and 
shots would afect recognition accuracy. In this session, we frst 
randomly selected � commands (� ∈ {5, 10, 15, 20, 25}). The last 
two shots from all conditions are selected as test data. We then 
trained the model with � (� ∈ [1..10]) shot(s) randomly selected 
from the remaining data, which can belong to diferent conditions. 
Since there are too many possible combinations of data selection, 
we repeated the test 1000 times to simulate that training data is 
collected over various conditions in daily use. As illustrated in Fig-
ure 6, The model’s performance improved rapidly as the number 
of shots increased. In 5-command classifcation, the F1-score was 
0.9574 ± 0.0286 with only one shot and became 0.9924 ± 0.0058 with 
three shots of each command. Compared to other input modali-
ties (e.g., gesture, eye gaze), one of the most important advantages 
of speech is its expressiveness. Therefore, supporting more com-
mands is crucial to providing better silent speech interactions. The 
result showed that although more commands led to slight perfor-
mance degradation, the model still obtains a one-shot F1-score of 
0.8947 ± 0.0530 when classifying 25 commands and an F1-score of 
0.9819 ± 0.0120 was achieved with four shots. The standard devi-
ation was also reduced when the number of shots was increased, 
indicating that more training samples can improve the model’s 
robustness. Thus, the proposed method is promising for recogniz-
ing a large number of silent speech commands, and the model’s 
knowledge can be extended by collecting more data in real use. 

5.4 Experiment 2: Generalization ability 
A common scenario is that the recording setting is signifcantly 
diferent from where the user actually uses it. The model can learn 
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Figure 5: 2D UMAP Visualization of the feature embedding space with data from S10 as an example. Commands and conditions 
are depicted in colors and symbols, respectively. The zoom-in area shows that the data distributions of the same command from 
diferent conditions are mostly overlapped, suggesting that our visual speech representation is robust to environment factors. 
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Figure 6: Model test results in F1 measure. Left: Efect of the number of commands and the number of shots. Right: Generalization 
ability test. 

these diferences by asking the user to provide samples in every pos- six conditions and testing on data from the one remaining condition. 
sible condition, which however leads to user burden implications. For each training condition, we randomly selected only one sample 
We believe that our approach can be generalized to completely un- from each class, forming a 6-shot training dataset. This test was 
seen conditions without having such training data. First, we ran a repeated 100 times with random seeds. The box plot in Figure 6 il-
leave-one-condition-out test by training the classifer on data from lustrates the distribution of the F1-scores for the 11 participants. To 
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Number of shots 
Left-out condition 1 2 3 4 5 

Cross Lighting Average 
Artifcial Light 

Outdoor Daylight 
Low Light 

0.8954 
0.9079 
0.8876 
0.8906 

0.9227 
0.9344 
0.9125 
0.9212 

0.9391 
0.9509 
0.9283 
0.9382 

0.9463 
0.9587 
0.9347 
0.9454 

0.9504 
0.9629 
0.9391 
0.9493 

Cross Posture Average 
Standing 
Walking 
Seated 

0.9189 
0.9291 
0.9183 
0.9093 

0.9436 
0.9504 
0.9431 
0.9374 

0.9595 
0.9637 
0.9601 
0.9546 

0.9665 
0.9697 
0.9669 
0.9629 

0.9702 
0.9717 
0.9717 
0.9674 

Cross Gesture Average 
Right Hand 
Left Hand 

0.9332 
0.9162 
0.9456 

0.9555 
0.9425 
0.9632 

0.9680 
0.9568 
0.9739 

0.9746 
0.9646 
0.9797 

0.9780 
0.9689 
0.9823 

Both Hand 0.9377 0.9609 0.9733 0.9796 0.9828 

Table 2: Cross-condition model performance in F1 measure. 

compare with the predominant approach, which trains the model 
from scratch with considerable data collected from real users, we 
built a counterpart model that had the same architecture as our 
encoder but was trained in a supervised fashion. The counterpart 
model was trained on all data obtained from the training conditions 
(i.e., 6 conditions × 5 repetitions = 30 training samples per com-
mand), and it corresponds to the user-dependent train-from-scratch 
model in previous literature. Overall, our method achieved an F1-
score of 0.9895 ± 0.0078 (averaged over conditions), surpassing the 
counterpart model’s score of 0.7147 ± 0.2576. This result shows that 
our method provides signifcantly higher recognition accuracy and 
is more robust to unseen environments. In addition, the counterpart 
model exhibited worse performance especially in the last three con-
ditions: walking posture (F1-score = 0.6930), outdoor light (F1-score 
= 0.5510), and low light (F1-score = 0.2134). This indicates that 
the accuracy of the conventional train-from-scratch method can be 
most severely afected by shaking videos and varying illuminations. 
To investigate our method’s capability to cope with this problem, 
we further conducted cross-condition experiments with control 
variables in the following sections. 

5.5 Cross-condition Performance 
People use smartphones in diferent places and at diferent times, 
leading to varying lighting conditions that can signifcantly afect 
the video’s quality. For example, insufcient lighting requires longer 
exposure time and higher sensor sensitivity, which can result in 
blurry images with noise. In contrast, bright sunlight can cause 
overexposed images that lacked highlight details. We select the 
data recorded under conditions C1, C2, and C3, corresponding to 
outdoor daylight, low light, and artifcial light, respectively, while 
the keeping posture and grasp gesture are fxed to standing and 
right-hand holding. A cross-lighting test was conducted by training 
the classifer under two conditions and testing under the other 
condition. 

The gesture of holding a smartphone depends on personal habits 
and the usage scenario. As a result, the camera angle relative to the 
face can vary in a wide range, causing diferent distortion efects 
in the image. We ran a cross-gesture test across conditions C3, C4, 

and C5, corresponding to standing, walking, and seated postures, 
respectively. While the gesture and lighting were set to right hand 
and artifcial light. 

Similarly, posture is also a vital factor in mobile lipreading, taking 
a video while walking leads to frequent camera angle changes and 
shaking videos with blurry frames. The cross-posture test was 
performed across conditions C5, C6, and C7, where the user was 
seated under artifcial lights but with diferent gestures, namely 
right hand, left hand, and both hands. 

All cross-condition tests were repeated 1000 times to mitigate 
the randomness of data selection. The results are shown in Table 2 
with all conditions showing a similar trend: the more shots, the 
better performance. We also fnd that the cross-lighting condition 
was more challenging, as its 3-shot average F1-score was 0.9391, 
which was notably lower than the cross-posture and cross-gesture 
conditions (F1-score 0.9595 and 0.9680). Overall, we conclude our 
framework still shows high and robust performance even in unseen 
conditions, which is promising for real-world applications. 

6 LIPLEARNER: CUSTOMIZABLE AND 
LEARNABLE SILENT SPEECH ASSISTANT 

To investigate the usability of our silent speech customization 
method, we implemented LipLearner, a mobile application for in-
situ customizable silent speech interaction with online few-shot 
learning. In this section, we elaborate on the implementation details 
of the application, including visual keyword spotting (KWS), online 
learning scheme, and interface design. 

6.1 Visual Keyword Spotting 
Detecting and segmenting the user’s silent speech has been chal-
lenging in real-time lipreading. Previous researchers have proposed 
to activate the recognition algorithm by using the opening degree 
of the mouth to identify silent speech [57, 58, 69]. However, this 
approach is prone to misactivation because it can be easily confused 
when the user is talking to others or unintentionally opens their 
mouth. 

We propose a few-shot visual keyword spotting method by lever-
aging the efcient representations extracted by our lip encoder 
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Figure 7: Top: Per-command EER and EER similarity threshold. We fnd that commands consisting of more visemes have 
higher EER and EER thresholds. Note that for better visualization, the commands are sorted by the length in viseme. Bottom: 
an example illustration of the positive and negative distributions of command "Play" and "Where’s the closest gas station," 
subvocalized by S1 and S2. 

model. Although KWS as an activation method has been predomi-
nant in voice interactions, to our best knowledge, this technique has 
not yet been applied in lipreading-based interfaces. Building a KWS 
model usually requires a huge number of positive and negative 
training samples, and it is difcult to provide user-defned wake-up 
keywords. We exploited the generalization ability of the encoder 
model, which is obtained during the contrastive pre-training, to en-
able silent keyword detection with customization and rapid calibra-
tion. To initialize the KWS module, the user registers a customized 
phrase as the keyword. Our system then calculates the similarity 
between the user’s real-time lip movements with the keyword ut-
terance sample, (i.e., the cosine similarity between the normalized 
vectors), thereby spotting when the user is issuing the keyword by 
comparing the similarity value with a specifed threshold. Thus, 

our technique is available with very few keyword samples and no 
negative samples. 

To determine the optimal threshold for keyword spotting, we 
leveraged our dataset to estimate the equal error rate (EER) thresh-
old by discriminating one command (deemed as positive samples) 
over the other commands (deemed as negative samples). The EER 
results and the corresponding similarity threshold of each com-
mand, averaged over all participants, are shown in Figure 7. Overall, 
our method achieved an average EER of 6.75% (standard deviation 
2.53%). In addition, the number of visemes in the command had a 
negative correlation with the EER (r=0.688), and an even stronger 
positive correlation with the EER threshold (r=0.852). This result 
suggests that using commands with more visemes (i.e., having more 
complicated lip movements) as the wake-up keyword can yield a 
lower error rate, but also requires a higher similarity threshold. 
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Figure 8: An example that illustrates the visual keyword spotting technique when the user says "Hello Alexa, set an alarm 
for 8 AM." When the similarity between the window input and the keyword is above a threshold of 0.6, an additional binary 
classifer is used to re-examine whether the keyword is issued. If so, the system starts to recognize the following speech as a 
command. After 1.5s (3 window step size), the system starts to detect the end of the speech (EOS) by calculating the similarity 
between the window input and the non-speaking sample with a threshold of 0.65. 

On the other hand, the optimal threshold can vary widely among 
individuals. For example, for command No.16 "What time is it", the 
optimal thresholds for P9 and P10 were 0.649 and 0.805. To better 
understand the data distribution, we visualized the similarity fre-
quency of Play, the command with the lowest EER threshold, and 
Where’s the closest gas station the command with the highest EER 
threshold, by using the data from S1 and S2. 

Based on these observations, we concluded that although a high 
keyword spotting accuracy can be achieved using similarity alone, 
the practical performance optimal threshold can vary considerably 
depending on the length of the phrase in viseme and the pattern of 
the user’s speech. Therefore, we adopted a relatively low threshold 
of 0.6, which can accept almost all positive samples over all users 
and commands in the dataset while still rejecting most negative 
samples. We employed another logistic regression binary classifer 
to perform a rapid calibration to reduce false positives to discrim-
inate in actual use. As shown in Figure 10 C, the user can report 
when a false positive occurs, and the utterance that has misacti-
vated the system will then be learned as negative. Fortunately, as 
demonstrated in Figure 8, the similarities between non-speaking 
lip movements were signifcantly higher, making it much easier to 
spot the end of the silent speech input. Therefore, we only used a 
similarity threshold of 0.65 without additional classifers. Further-
more, we set a maximum utterance length of 4s, which means the 
system will automatically stop recording and perform recognition 
when the input is longer than 4s. 

In real-time use, we used a sliding window of 30 frames (assum-
ing 1s) to extract feature vectors over time. Suspected keyword 
utterances were detected using the similarity threshold and re-
examined using the additional binary classifer. If the utterance is 

classifed as positive, the system is activated and will recognize 
the subsequent input as a command. Since there is usually a pause 
between the keyword and the command, the system will start to 
detect the end of the utterance after a delay of 1.5 times of window 
length (approximately 1.5s). 

6.2 System Implementation and Online 
Incremental Learning Scheme 

We developed an iOS application on an iPhone 13 Pro as a proof-of-
concept prototype of LipLearner. The video stream from the front 
camera was frst cropped into the ROIs by using the Vision [27] 
framework to detect the face and lips. The PyTorch-format lip 
encoder model was converted into the Core ML [23] format, which 
extracts feature vectors from the ROIs. Finally, we employed the 
MLLogisticRegressionClassifer of the Create ML [24] framework to 
learn the vectors for keyword spotting and silent speech command 
recognition. The system latency was approximately 250ms feature 
extraction for 30 frames + 172ms classifcation ≈ 422ms, which is 
sufcient for real-time interactions. Note that all recognition and 
fne-tuning processing is done on a commodity mobile phone. Thus, 
LipLearner can be used without network connections and has all 
data stored locally, addressing the privacy concerns in lipreading. 

Model tests in section 5.3 have shown our method can exploit 
multiple shots for more accurate and robust recognition. To apply 
this ability in practice, we designed an incremental learning scheme 
that continuously learns from new data to maximize accuracy (Fig-
ure 10). The interaction design of LipLearner can be divided into 
the following four stages. 
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6.2.1 Initialization phase. To start with, LipLearner will require 
the user to set up the KWS system for activation and speech seg-
mentation. The user can record several keyword and non-speaking 
samples by holding the record button at the bottom of the screen. 
Feature vectors will be extracted from these samples, and the av-
erage vectors of each will be used to calculate the similarity for 
detecting keywords and EOS. As described in Section 6, we also 
initialized the additional binary classifer with those samples to 
re-examine suspected keywords. In the subsequent stages, users 
can report misactivations to improve the KWS classifer. 

6.2.2 Command registration mode. The user can create novel com-
mands at any time by switching to this mode. To ofer a more 
accessible command registration, we incorporate speech recogni-
tion to automatically learn new commands from the voice input 
using the built-in speech recognizer on iOS 16 [25]. Figure 10 B 
illustrates the registration mode. When the user speaks the new 
command aloud, LipLearner will record the lip movements and 
prompt the text recognized from the voice signal as the label. The 
user can make corrections to the text if incorrect, or just manually 
input the label if vocalizing is not preferred. Note that to maximize 
the accuracy, the registration phase also requires the user to frst 
wake up the system using the keyword. 

6.2.3 Active learning mode. When the quantity of training data 
is small (e.g., less than 3 shots), the user can use the system in 
the active learning mode to improve the model. The system will 
proactively solicit new data by asking the user to confrm whether 
the prediction is correct, if not, the user needs to select the correct 
label from existing commands. Since we only need to re-train the 
logistic regression classifer part of the model, after new samples 
are collected, the user can perform on-device fne-tuning at any 
time. We report that this process can be fnished in 2217ms (10-test 
average) with 30 commands × 5 shots = 150 samples as training 
data, suggesting that it is possible to update the model in an in-situ 
manner. 

6.2.4 On-demand Learning Mode. If the user thinks that the model 
has already achieved high performance, they can use the on-demand 
Learning mode, where the system does not actively collect any data. 
Instead, the user can choose to correct and add only the misrecog-
nized samples. This mode requires the least efort and prevents the 
classifer model from overftting. 

7 USER STUDY 
We conducted a user study to evaluate LipLearner’s usability. This 
study is distinct from the model test because the silent speech com-
mand is issued in real-time and segmented by the KWS algorithm. 
Furthermore, we wanted to investigate whether our method is able 
to recognize user-created commands, which can be meant for difer-
ent intentions with diverse expressions, even in diferent languages. 
Finally, it was also important to observe the user’s behavior in our 
human-involved online learning process. 

7.1 Participants and Apparatus 
We recruited 16 participants experienced in using voice assistants 
to use LipLearner. The participants’ native languages are ranging 
from English, Chinese(including Mandarin, Cantonese, and Hakka), 

Spanish, Japanese, Malay, and French. This user study also got 
approved by the university’s IRB and all participants were paid 
2100 JPY for compensation. 

An iPhone 13 Pro running the LipLearner application was used 
as the apparatus for the user study. The participants were seated in 
an armchair and encouraged to hold the phone in the usual way. 

7.2 Design and Procedure 
The user experience design of LipLearner is shown in Figure 10 and 
our user study is consistent with it. 

Participants were frst given a brief introduction to the system 
and the interface, after that they were asked to defne their wake-up 
keyword in the format of "Hello, X", where "X" is their preferred 
name for a smart assistant. Since we have found that phrases with 
more visemes can provide better KWS performance, "X" was limited 
to those have more than 3 visemes. Next, participants initialized the 
system by recording keyword samples and non-speaking samples 
three times each. Then participants were given fve minutes to 
get themselves familiar with LipLearner by using the activation, 
command registration, and recognition functions. After participants 
had sufciently practiced, they were asked to defne their own 
command set in advance. The command set for user study was 
divided into three categories based on the level of creative freedom 
they permit, listed in ascending order as follows: 

(1) Pre-defned. We pre-defned 10 English commands (Table 3 
in appendix). Participants were asked to register each com-
mand exactly as it is. 

(2) User-described. We illustrated 10 scenarios where smart 
assistant could be used (see Figure 9 and Table 4). Participants 
were asked to use their own words to describe the command 
they prefer to say in the scenario. There were no restrictions 
on the language. 

(3) User-created. Participants were asked to freely create 10 
commands with no restrictions or guidance. (Table 4). 

Participants registered the 30 commands in one shot using the 
Voice2Lip technique by speaking aloud "Hello [Name], [Command]". 
Alternatively, they could also choose to input the label manually in 

Figure 9: The user is registering a user-described command 
that is defned with the guidance of an illustration. 
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Figure 10: User experience and interface design. (A) The interface of the initialization phase. The user frst needs to record 
keyword and non-speaking samples to enable KWS activation. (B) The user says a command aloud for command registration. 
The voice signal will be leveraged to label the silent speech, allowing fast command registration (Voice2Lip). (C) The interface 
for querying the right label in the active learning mode. Users can slide through the existing commands sorted by similarity to 
select and add a new sample to the model. Users can update the model at any time by using the button at the upper-right corner, 
which usually takes around 2 seconds on iPhone. (D) An example showing the command "play some music" is recognized 
correctly and executed successfully by the pre-set shortcut. (E) The interface for correcting the predictions in on-demand 
learning mode. The user can review recent utterances displayed as a GIF animation. 

cases where they preferred to do so or the speech recognition was 
not functioning correctly. 

After fnishing command registration, participants had a live test 
session to test LipLearner’s performance over six trials. During the 
test, the experimenter could be directly consulted for clarifcations 
when desired. In each trial, the participant issued each of the 30 
commands once. The command to be issued was prompted on a 
27-inch monitor in random order. To evaluate the efectiveness of 
the online incremental learning scheme, the application was set to 
active learning mode to collect new data from each recognition. If 
the recognition result was correct, the participant was asked to tap 
the "add sample" button. Otherwise, they were asked to frst select 

the correct label for the command and then tap the "add sample" 
button. Upon completion of each trial, LipLearner would obtain a 
new sample for each command. The participant then could update 
the model with the new samples by tapping the update button 
at the top-right corner. In this test, the recognition results were 
shown on the top of the screen without command execution. We 
also wanted to verify whether the patterns of lip movements in 
voiced (normal) speech and silent speech are diferent, and whether 
this potential diference would lead to inconsistent recognition 
performance. To do so, in the frst two trials, participants were 
asked to say the command either in voiced speech or silent speech. 
The order of the voice trial and the silent trial was counterbalanced 
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Figure 11: Facial expression registered as emojis by P10. 

among participants. To avoid efects on subsequent trials, only the 
samples from the silent trial were used for incremental learning as 
the second shot. 

After the six trials, participants were given 5 to 10 minutes to 
use LipLearner freely in on-demand learning mode, where they can 
optionally correct misrecognized commands for better performance. 
As a proof-of-concept system, we pre-confgured the 10 pre-defned 
commands with the Shortcuts [26] function on iOS, while the other 
20 custom commands would still only show the recognition result. 
We encouraged the participants to experience all pre-confgured 
shortcuts at least once. Finally, they flled out a System Usability 
Scale (SUS) [4] questionnaire before attending a semi-structured 
interview about the experience of using LipLearner. 

8 RESULTS 

8.1 Observations 
In order to better understand the efect of LipLearner and seek new 
insights, we noted down the observations during the user study. 

Overall, all participants used the LipLearner smoothly to reg-
ister and issue silent speech commands. They have personalized 
LipLearner’s names and defned a wide variety of commands (see 
Table 4 in appendix). All non-native English speakers customized 
the commands in their native language, and 4 participants used 
more than 2 languages. P12 even used 5 languages to customize 
commands. This linguistic diversity and promising performance 
suggest that LipLearner holds the promise of enabling arbitrary 
language for silent speech. 

In the case of user-defned commands with given scenarios, al-
though some were relatively similar or even the same (e.g. P2, P5, 
P9 used exactly the same command "关灯" in Chinese), the partic-
ipants used the expressions that ft their language and speaking 
habits most. As for the user-created commands, the great rich-
ness indicates that LipLearner can exploit much expressiveness of 
lipreading. 

Some of the participants noticed that LipLearner recognized 
correctly even if they did not say the commands exactly the same 
as the commands they have registered. For example, the registered 
"what’s the weather today" can be used as "What’s the weather like 
today". The model shows some certain tolerance in all language 
tested, particularly for minor changes in mid-sentence and end-of-
sentence. This nature demonstrates the afnity to real scenarios in 
which people will register more than 30 commands and may not 
precisely remember every command. 

In the free-use session, P10 tried recording four facial expressions 
as commands (Figure 11 A) and labeled them with emojis. Since this 
interesting behavior was never observed before, the experimenter 
noted down the following recognition results of those expressions. 
Note that those expressions were recorded in a one-shot manner 

and classifed along with the existing 30 commands. Our system cor-
rectly recognized 9 out of 11 tries, and the participant commented, 
"It knows what expression I’m trying to make! It’s so fun!" This re-
vealed LipLeaner’s potential in recognizing non-verbal commands, 
which will be discussed later in Section 9.1. 

8.2 Quantitative Results 
8.2.1 Keyword Spoting performance. We logged the number of 
misactivations and false negatives in each trial and depicted it 
in Figure 12 (A). The FPR began from 0.26% in the frst trial and 
decreased rapidly as the user reported more misactivations, fnally 
achieving 0.07% with approximately 7 samples. This result indicates 
that although the KWS function was initialized with only positive 
samples, it could provide good performance in an early stage and 
learns efciently from negative samples over time. 

The average false negative rate (FNR) across 7 trials was 1.43% 
without notable changes (standard deviation is 0.45%), because we 
did not collect positive samples for keywords except in the initial-
ization phase. Note that a lower similarity threshold can reduce 
false negatives. Although it may also lead to a higher false positive 
rate (FPR), we think it is admissible given LipLearner’s remarkable 
ability to cope with misactivation. However, since determining the 
best threshold for all users is impossible, future work should open 
this setting to the user’s choice. 

8.2.2 Overall Recognition Performance. As shown in Figure 12 (B), 
frst, we fnd that the one-shot model whose training data all comes 
from voice input had better accuracy in recognizing vocalized ut-
terances (87.29% ± 10.42%) than recognizing unvocalized utterances 
(81.67%±12.80%). This suggests that voiced speech and silent speech 
can have diferent patterns in lip movements, and learning silent 
speech from normal speech led to a slight drop in classifcation 
accuracy. However, in the post-experiment interview, all partici-
pants still expressed a preference for Voice2Lip when registering 
new commands, while using the keyboard to input the command 
label was considered only when speech recognition fails. There-
fore, we believe that sacrifcing approximately 5.6% accuracy in 
30-command classifcation to expedite the command registration 
process is acceptable. 

Furthermore, LipLearner could efciently expand its knowledge 
with new samples, which is consistent with the result of the model 
test. The accuracy rose from 96.04%±4.12% with 3 shots to 98.75%± 
2.60% with 5 shots. Notably, 14 out of 16 participants achieved 100% 
accuracy within 5 shots. Most participants favored the on-demand 
Learning mode because the accuracy was sufcient after fnishing 
the active learning phase and they felt confdent using the system 
([P7, P9, P15]). To highlight the efect of the online incremental 
scheme, we simulated a situation where the model did not learn 
new data during the experiment (Figure 12 (B)). We evaluated the 
system with the same data collected from the user study, while the 
model was maintained to be the frst one-shot model. The result 
shows that the performance does not improve as the number of 
trials increases, suggesting that the performance improvement was 
accomplished solely by incremental learning, instead of the user’s 
familiarization of saying the commands. 
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(C) Per-command-set recognition performance
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Figure 12: The false positive rate and recognition performance of LipLearner. 

8.2.3 Per Command Set Recognition Performance. We examined 
whether LipLearner could provide consistent performance regard-
less of how the commands were defned by calculating the recogni-
tion accuracy in a per-command-set manner 12. In the frst silent 
trial, where the model only used one shot for training, LipLearner 
achieved better performance on the pre-defned and user-created 
commands (average accuracy 0.8646 and 0.8500), while the accu-
racy on user-described commands was lower (average accuracy 
0.7646 ). Considering the fndings in Section 6, we speculate this 
diference is caused by the command length. We observed that in 
the user-described part, participants tended to use short but concise 
commands to follow the guidance in the illustrations, such as "Call 
mom" and "Find my car". In contrast, user-created commands were 
longer, more casual, yet full of creativity, e.g., "What are you doing 
in my swamp!" and "さっきの写真をインスタグラムにあげて 
(Post my recent photos to Instagram)". The gap among diferent 
command sets was closed substantially as more samples were pro-
vided. Eventually, all accuracies became above 99% with 5 shots, 
demonstrating LipLearner’s ability to learn complicated commands 
in diferent languages efciently. 

Figure 13: Usability test results using a 5-scale SUS question-
naire. The horizontal axis is the percentage of responses in 
each category. Note that the scores of negatively worded state-
ments (Q2,4,6,8,10) are reversed for better visualization. 
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8.3 Qualitative Results 
8.3.1 Qestionnaire Results. The SUS results suggest generally 
positive feedback on usability from participants with an overall 
score of 84.8±6.6, which means it is highly usable and acceptable by 
users according to Bangor et al.’s empirical evaluation [3]. In general, 
participants expressed confdence in their ability to efectively use 
the system and rated it as highly easy to use and easy to learn. The 
details of each SUS question can be found in Figure 13. 

8.3.2 Interview feedback. We further transcribed the interviews 
and extracted quotes that were related to user experience and opin-
ions about LipLearner. All participants were the frst time using a 
silent speech interface. For the overall usability, 13 out of 16 partic-
ipants explicitly mentioned that they would like to use LipLearner 
in the future: "Now I can use my smart assistant anywhere "[P2]. 

Participants were also impressed by the accuracy of the model 
and the rapid learning process. "It learns so efciently, [LipLearner] 
almost can read all my commands by only listening to me once"[P9], 
"It’s amazing that the model can be trained in the blink of an eye."[P15] 

All participants have noticed the improvement in recognition 
performance, 11 of them found it enjoyable to see the model per-
forms better and better. "I enjoyed teaching the AI model, it brings 
me closer to my smart assistant, making it no longer feel like a cold 
algorithm."[P7] When asked further how many times they were 
willing to teach the model, most answers were around 3-5 times. 
P14 even expressed that "I am willing to provide more samples for 
each command since I will gradually enrich my command set instead 
of immediately registering 30 commands as we did in the user study." 

Some participants further provided suggestions on how we could 
improve the prototype. Regarding the user interface and interaction, 
P8 believed that "The camera view was distracting. I don’t think it 
should necessarily be displayed to users." and P13 mentioned "I would 
be happy if the confrmation process could also be done using silent 
speech." 

While most of the participants were satisfed with using Li-
pLearner in the on-demand learning mode, P6, P7, and P16 all 
mentioned about consequences of command execution with mis-
recognition. "The commands have diferent importance and priority. 
It is better to confrm before the important commands, otherwise, 
something misrecognized as ’call the police’ may lead to a bad conse-
quence." [P16] 

To conclude, subjective feedback indicated that our system was 
easy to use and easy to learn, and has provided essential func-
tionalities that allow users to customize their silent speech input 
experience in real-time. 

9 DISCUSSION 

9.1 Lipreading Beyond Speech 
LipLearner benefts from the efcient visual speech representations 
learned via a contrastive learning strategy. Through our usability 
studies, we have demonstrated that our method enables to recog-
nize silent speech with a small amount of training data, and its 
excellent performance can generalize to diferent phrasing, lan-
guages, and even non-verbal lip gestures such as making facial 
expressions. This ability push forward lipreading beyond speech. 
One potential application is using lipreading for user authentication 

in complement to face recognition, preventing spoofng attacks and 
password leakage. The user can defne a secret "lip password" by 
combining several lip gestures, and our few-shot learning technique 
allows the user to change the password with little efort. Such non-
verbal password is difcult to be inferred or remembered by others, 
therefore being suitable for high-security authentications, e.g., un-
locking the device or making a payment. Furthermore, although 
our model is purposed to learn semantic information, we expect 
the semi-supervised visual speech representations also have the 
potential to inform user-dependent patterns stemming from subtle 
lip movements, making it more unlikely to be reproduced by others. 
Investigating the diference among individuals can help further 
understand the feasibility of lipreading-based speaker verifcation. 

9.2 Towards Wearable Lipreading 
This research is based on mobile interactions because of the preva-
lence of smartphones. However, we believe lipreading technologies 
can facilitate communication between humans and computers in a 
diversity of scenarios. The recent boom in head-mounted displays 
(HMD) based VR/AR applications calls for natural input methods 
with high mobility. Lipreading is a promising approach for its ex-
pressiveness and low learning cost, and it can be easily implemented 
by embedding a lip-observing camera in the headset. However, 
lipreading at such a close distance is not trivial because capturing 
the mouth usually requires a fsh eye camera, whose distortion 
efects can pose challenges for recognition. Yet, placing the cam-
era in the front of face is obtrusive. Our method in contrast has 
shown a consistently good performance recognizing from diferent 
points of view. To explore the feasibility of applying LipLearner 
in wearable scenarios, we did a preliminary study by mounting a 
USB camera on a 3D-printed headset (Figure 14) that captures the 
user’s profle face. We collect a dataset from one of the authors 
with the same command set used in Section 4, making up a dataset 
of 25 commands × 4 repetitions = 100 samples. We evaluated the 
system’s performance by running an ofine test on a PC, and the 
1-shot, 2-shot, and 3-shot accuracies are 0.7941, 0.9387, 1.0 (aver-
aged over 100 random seeds). These early results indicate that our 
model can achieve good performance even recognizing profle faces. 
Furthermore, the visual KWS technique can free users’ hands and 
better make them immersed in the virtual worlds. This preliminary 

Figure 14: The device used for the preliminary test on wear-
able lipreading using our few-shot customization framework. 
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study demonstrates that our few-shot lipreading framework holds 
the promise of extending the dimensions of VR/AR interactions. 

9.3 Human-in-the-loop Incremental Learning 
LipLearner sheds new light on human-in-the-loop interactions by 
focusing on ofering a natural and easy way to involve users. Instead 
of immediately requiring enormous data to pursue high accuracy, 
we introduce a one-shot command registration technique Voice2Lip 
to allow rapid initialization. LipLearner proactively solicits new 
samples from the user when the data is insufcient, and learns in 
an on-demand mode when high accuracy is achieved. Feedback 
from the user study suggested that participants enjoyed this human-
AI interaction, and they were willing to help with improving the 
AI system during use. We envision that in the future, the design 
space of how to engage users to provide knowledge for learnable AI 
systems, such as minimizing the disruptions, will be an important 
topic in HCI. 

10 LIMITATIONS AND FUTURE WORK 
While LipLearner demonstrates favorable usability, there are several 
key limitations that will need to be overcome in the future. 

First, there is still room to lessen the physical and cognitive labor 
of active learning. Several participants mentioned despite the fact 
that they enjoyed helping improve the model in the active learning 
mode, it would be better to be able to validate or correct the predic-
tions also using silent speech (e.g., saying "Yes" or "Cancel") instead 
of tapping buttons. Although this feedback also indicates that silent 
speech is preferred for its low efort in mobile interactions, the 
interaction design should be optimized to better involve the user 
in the human-in-the-loop fow. 

Second, although our user study observations revealed LipLearner’s 
tolerance for minor changes of expressions, this may make it more 
difcult to distinguish very similar commands. For example, we 
fnd that one of the common misrecognition is between "Turn on 
the light" and "Turn on the fashlight". The problem can be alleviated 
by proactively soliciting more samples for low-accuracy commands 
or asking the user to rephrase. 

Undoubtedly, few-shot learning has enhanced silent speech by 
extending the vocabulary capacity and minimizing the user bur-
den in command registration. However, due to the lack of context, 
the level of abstraction of lip commands is still relatively low. For 
example, two separate commands need to be registered to set the 
alarm for 8 AM and 9 AM. We envision that the expressiveness and 
abstraction level of LipLearner can be further boosted by training 
zero-shot lipreading models jointly with language models such as 
GPT3 [5] or T5 [51]. In zero-shot lipreading, the user only has to 
prepare a bunch of command candidates they would like to use, and 
the model can recognize completely unseen commands by matching 
lipreading embeddings with text embeddings. 

11 CONCLUSION 
This paper presents LipLearner, a lipreading-based silent speech 
interface that enables in-situ command customization on mobile 
devices. We leverage contrastive learning to build a model to learn 
efcient visual speech representations from public datasets, provid-
ing in-situ fne-tuning for unseen users and words using few-shot 

learning. For a preliminary test, we collected a dataset covering 
various mobile interaction scenarios to evaluate the model’s perfor-
mance and robustness against lighting conditions, user posture, and 
hold gestures. The result showed that our method could provide 
consistent performance in diferent settings, outperforming conven-
tional supervised methods. To investigate usability, we developed 
a prototype of LipLearner on iOS by integrating the few-shot cus-
tomization framework with an online incremental learning scheme, 
involving the user in the learning process to improve the model on 
their demand. We further minimize the labor of command regis-
tration and incorporate speech recognition to automatically learn 
new commands from voice input. Through a user study, we demon-
strated that LipLearner also has excellent performance with various 
commands defned by participants in diferent languages. The sub-
jective feedback suggested that LipLearner is easy to use and easy 
to learn, and most participants enjoyed the human-AI integrated 
interaction. To conclude, our system democratizes silent speech by 
ofering quick-start on-device lipreading, and it unleashes users’ cre-
ativity with customizable commands. We hope our work can bring 
the vision of human-centered AI closer to reality, spotlighting the 
importance of intuitive and personalized interaction experiences. 
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A USER STUDY COMMAND SET 

Table 3: 10 Pre-defned Commands. 

Get directions to gas station Take a photo 
Open Twitter Turn on focus mode 
Play some music Turn on the fashlight 
Send an email What’s the weather today 
Set an alarm for 8 am Show today’s schedule 

Table 4: 20 custom commands. B1 to B10 are the user-described commands with given scenarios. C1 to C10 are the user-created 
commands. 

Participant P1 P2 P3 P4 
Languages French, Japanese, English Chinese, English Chinese, Japanese, English Spanish, English 
Keyword Hello, Mirai Hello, Baymax Hello, Mugi Hello, David 
B1 キーはどこ 我钥匙呢 Where is my key Donde estan mis llaves 
B2 Apelle maman 打给妈妈 Call my mom Llama a mama 
B3 Ouvre les rideaux 拉开窗帘 Open the curtain Abre las cortinas 
B4 Reserve un ticket d’avion pour le Japon 去东京的机票多少钱 Buy the ticket to tokyo Compra pasaje de vuelo 
B5 電気消して 关灯 Turn of the light Prende las luces 
B6 Order food 最近的汉堡店在哪 Reserve a restaurant Llama a ubereats 
B7 最近のニュースはどう 今天有什么新闻 Open Japan today Dime las noticias de hoy 
B8 6 minutes timer 倒计时6分钟 Count six minutes Pon cronometro de seis minutos 
B9 Where is my car 我车呢 Find my car Encuentra mi auto 
B10 Monte le chaufage 关空调 Turn of the air conditioner Prende la calefaccion 
C1 Read this 带我去最近的超市 分かりません Reinicíate 
C2 一番近いゲーセン 现在几点 また来週 Abre traductor de google 
C3 Comment ca va? 明天八点叫我起床 だめだね Call father 
C4 I am having a lot of fun 东京大学怎么样 Do some research Edit photo 
C5 Quand ouvre le cinema 播放《武林外传》 关闭声音 Dim screen to minimun 
C6 What are you doing in my swamp 打开亚马逊搜索 给我点钱 Delete photo 
C7 Name all the pokemons 帮我打的去机场 帮我做饭 Lock my screen 
C8 Chante une chanson 提醒我下周三上午九点有会议 打电话给爸爸 Open clash of clans 
C9 Create a macro for my lilly heals 打开日语翻译器 打开电视机 Download fle 
C10 When is the next HatsuneMiku concert 豆沙馅怎么做 放点轻松音乐 Share video 

Participant P5 P6 P7 P8 
Language Used Chinese, English English English Japanese, English 
Keyword Hello, Mamun Hello, Mr. Ha Hello, friend Hello, David 
B1 Where’s my key Can you fnd my key Where’s my key 鍵をさがして 
B2 Call mom Call Mom Call my mom お母さんをよんで 
B3 Open curtains Open the curtain Open curtain カーテンをあけて 
B4 预定飞机票 I want to book a ticket to Tokyo Find me a ticket to tokyo 航空券を予約して 
B5 关灯 Turn to sleep mode Turn of light 電気を消して 
B6 预定餐厅 Find the nearest restaurant Find me some restaurants レストランを予約して 
B7 浏览新闻 What’s the news today Read me some news ニュースを読んで 
B8 设定6分钟的计时器 Set a timer for 6 minutes Set a 6 minutes timer ６分間のタイマーをセットして 
B9 寻找我的车 Find my car Where did I park my car 車を探して 
B10 打开暖风 Turn on the air conditioner Turn of the aircon 暖房をつけて 
C1 整理相册 Tell me how to say ”sorry” in Japanese How to go to my university 一ドルは何円 
C2 打开投影仪 Am I smart? Text my mom 今日の予定を教えて 
C3 设定闹钟 Delete Wechat Clean my house 今日の天気を教えて 
C4 今天的股票价格 Buy some pork in Amazon Play happy eliminating フェイスブックを開けて 
C5 你的工作是什么 Update my calendar Show my calendar 自宅までの距離は？ 
C6 播放音乐 Where is the bus stop Where’s the nearest hospital クラシック音楽をかけて 
C7 讲个笑话吧 Call uber to my hometown USD to Japanese yen ドアを開けて 
C8 最近的音乐会有哪些 Install Google What’s gravity 大阪までの経路を教えて 
C9 今天的天气如何 Buy 1 million stocks Open camera 明日の７時に締め りをリマインドして 
C10 导航回家 Call my lover Turn of volume 卵焼きの作り方を教えて 

Participant P9 P10 P11 P12 
Language used Chinese, English Chinese,English Chinese, English Chinese(Cantonese, Hakka), Malay, Japanese, 

English 
Keyword Hello, Tom Hello, Alexa Hello, Jessica Hello, David 
B1 我的钥匙在哪 Find my key Where is my key 我的钥匙叻 
B2 打电话给妈妈 Make a phone call to Mom Make a call Call mami 
B3 打开窗帘 Open the curtain Open the curtain Wake me up at 9 
B4 帮我买去东京的机票 Book a fight ticket Book a fight ticket Tolong beli tiket ke jepun 
B5 关灯 Turn on the light Turn of light Nak tidur ni 
B6 查找附近的餐厅 Make a reservation of restaurants Find a restaurant いい感じのレストラン探して 
B7 打开新闻 What’s today’s news Show news Pull up today’s news 
B8 倒计时六分钟 Set a timer for six minutes Set the alarm clock at 6 Set the timer to 6 
B9 我的车在哪 where is my car Find my car 車どこ 
B10 提高空调的温度 Turn on the air conditioner Turn up the temperature 太冷了 
C1 提高耳机音量 放几首歌听 Tell a joke I want to be rich 
C2 帮我回复妈妈的微信，好的 今天天气好吗 Turn of camera and microphone I will be back 
C3 早上8点开始洗衣服 设定一个明早九点的闹钟 Clean the trash bin Esok jangan lupa BBQ ye 
C4 打扫房间 今天天气怎么样 How old are you? きみ、かわいいね 
C5 今天天气怎么样 怎样去学校 Navigate me to the conference center あらあら 
C6 明天9点叫我起床 明天会下雨吗 Calculate twenty three hundred divided by six ラーメンは煮干しでしょ 
C7 我的手机在哪 打电话给小李 推荐一些新书 CHI論文通して 
C8 提醒我明天交作业 附近有什么餐厅 叫个外卖 可以点菜了吗 
C9 每小时帮我倒水 放一首周杰伦 未来一周的天气如何 唔中意日本 
C10 附近的商场有哪些 帮我发条短信 新建文件夹 这个たこ焼き不错
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Participant P13 
Language used Japanese, English 
Keyword Hello, Alexa 
B1 Where is my key? 
B2 Hello mom 
B3 Good morning 
B4 一番安い飛行機はどれ？ 
B5 電気を消して 
B6 一番近いレストランはどこ 
B7 ニュースを開いて 
B8 Set Timer 
B9 where is my car 
B10 エアコンの温度を下げて 
C1 Is Singularity already here? 
C2 Make collage lunches better 
C3 Write a book that sells well 
C4 What is the raw material of these clothes 
C5 Grow houseplants 
C6 味噌汁を作って 
C7 ハンバーガーのハンバーグ抜きを頼んで 
C8 遅刻の言い訳を考えて 
C9 日本メタバース協会ってなに 
C10 私の博士論文を書いて

P14 
Japanese, English 
Hello, Alexa 
I lost my key 
Call my mom
カーテンを開けて 
I want to go to tokyo 
Turn of the light
お腹すいた 
open news app 
Set a timer 
Find my car
暖房つけて
お腹いっぱいです
家に帰りたい
喉が いた
電源を消して 
Find my laptop 
Misactivate 
Tell me a joke 
Say hello 
What time is it 
What’s your name 

P15 
Chinese, Japanese, English 
Hello, Oliver
钥匙去哪了
给妈妈打电话
打开窗帘
查询一下去东京的机票
关灯
有没有什么推荐的餐厅
今天有什么新闻
倒计时六分钟
我的车子在哪
调高空调温度
家への経路を教えて
明早7点叫我起床
さっきの写真をインスタグラムにあげて
ラーメン食べたい
麻婆豆腐怎么做
電気を消して
静かにして
今日の終電は何時
最近のヒット曲を再生して
車借りて

P16 
English 
Hello, Thomas 
Looking for my key 
Call mom 
Draw the curtains 
Check for tickets to tokyo 
Turn of the lights 
Find a restaurant for me 
What’s news today 
Countdown 6 minutes 
Where did I park my car 
Warm up here 
Check formula 1 schedule 
USD to Japanese yen 
Check youtube updates 
Monitoring my dog at home 
Next month’s bills 
Play my daily mix 
Check out the nearby exhibitions 
Call the police 
Todo list tomorrow 
Open Netfix 
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