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Figure 1: LipType enables efficient and private text entry on mobile devices in various daily scenarios. The system performs
high-performance silent speech recognition and candidate suggestion using only initial letters as complementary information,
providing effortless and faster text input experiences even in one-handed situations.

Abstract

Although exhibiting great potential in enabling seamless communi-
cation between humans and conversational agents, large vocabulary
recognition is still challenging for silent speech interfaces. In this
research, we propose a novel interaction technique that combines
silent speech and typing to enable more efficient text entry while
preserving privacy. This technique allows users to use abbrevi-
ated phrase input while still ensuring high accuracy by leveraging
visual information. By fine-tuning a large language model with
a visual speech encoder, we condition the models to decode the
speech content with word initials as hints. Evaluations on existing
datasets show that our model can reduce the Word Error Rate from
20.3% to 9.19%, compared to state-of-the-art visual speech recog-
nition models. Results from a user study demonstrated significant
improvements in input speed and keystroke saving. Participants
reported that our prototype, LipType, leads to an overall lower per-
ceived workload, particularly in the effort and physical demand
dimension.
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1 Introduction

Efficient text entry on mobile devices, which typically relies on vir-
tual on-screen keyboards, remains a challenge due to small screen
sizes and the lack of haptic feedback. These constraints often lead to
reduced typing speed and accuracy and pose significant challenges
to efficient text input. Previous research in HCI has been putting
significant effort into solving this issue by proposing gesture-based
typing techniques [5, 57], auto-correction methods [59], and predic-
tive input methods [27], and other multimodal schemes [46, 61]. Re-
cently, the emergence of powerful Large Language Models (LLMs),
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which are capable of processing and performing complicated text-
based tasks, has enabled more complicated text-based tasks such
as co-programming with Al [34], robot control [36], and cognitive-
behavioral therapy [13]. However, it also elicits an urgent demand
for efficient and seamless interactions with conversational agents
through natural language-based communication.

In this work, we propose a novel technique that integrates silent
speech with traditional typing to enable more efficient text entry
while preserving user privacy. Drawing from Baddeley’s model of
working memory and the phonological loop theory [3], which un-
derlines that our short-term memory involves a subvocal rehearsal
process, we explore the possibility of natural and intuitive inter-
action with simultaneous silent speech and typing input. Silent
speech interaction leverages non-acoustic signals to infer the con-
tent of speech, which is a promising alternative for voice interfaces
by providing rapid input while minimizing privacy concerns, es-
pecially in situations where it is inappropriate to speak aloud (e.g.,
in public or during a meeting) or speech recognition is not reliable
(e.g., in noisy places). Researchers have explored different sensing
modalities such as ultrasound sensing [24], EMG [21], RFID sens-
ing [51], EEG [37], and video cameras [44] to obtain speech-related
signals by tracking the movement of articulators, and developed
methods to decode human speech from such data. The video-based
method, or lip-reading, can provide the best recognition perfor-
mance because of its high spatial and temporal resolutions, and
the prevalence of cameras has made it easy to access by end users
and produced large datasets. However, current research indicates
that we are still far from practical lip-reading systems that ensure
high accuracy. The state-of-the-art model on open datasets marks
a Word Error Rate (WER) around 20.3% [28], resulting in a signif-
icant gap between speech recognition models such as OpenAI’s
Whisper [38] (2.7%). The reason is multi-dimensional, such as insuf-
ficient data and inherent ambiguity of lip movements. Furthermore,
voiced speech and subvocalized speech show a different pattern in
lip movements [44], leading to a considerable performance loss to
lip-reading models when they are actually used in a silent manner.

With the abundant visual information captured from the cam-
era on a smartphone, we anticipate that the initial letter of each
word in the sentence would provide essential information that
significantly alleviates the uncertainty of silently uttered speech,
enabling high-performance lip-reading. Furthermore, given that
the average length of English words is approximately 5 letters [6],
ideally, typing only word initials would save about 80% keystrokes.
Reducing the number of keystrokes is valuable in text entry tasks
because it leads to lower motor costs and higher input efficiency.
To verify the feasibility of this idea, we propose a multimodal ma-
chine learning approach that combines visual and text input, which
thereby leverages decoder-only LLMs to reconstruct the speech
content conditioned by the word initials. Through offline evalua-
tions on public lip-reading datasets, we found that our approach
leads to a much lower 6% Word Error Rate (WER) compared to
the state-of-the-art visual ppeech recognition (VSR) model’s 20%.
This substantial improvement encouraged us to build a prototype,
LipType, on i0S to further investigate the usability of multimodal
silent speech and typing interaction. The prototype is intended to
serve as an alternative to traditional typing methods and provide
fast and accurate text entry functions, supporting a wide range
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of applications. We integrated necessary functionalities, including
candidate suggestion and automatic correction, and conducted a
user study in comparison with the traditional typing-only method.
During the study, we measured the system’s performance in three
dimensions: input speed, keystroke savings, and error rate. Fur-
thermore, NASA-TLX and System Usability Scale (SUS) tests were
used as subjective assessments to measure perceived workload and
usability. Overall, with our prototype, LipType, participants were
able to enter text faster, achieving a 33.10% higher Word Per Minute
(WPM) compared to the traditional typing method, averaged across
two-handed and one-handed conditions. By providing only word
initials as text input, LipType saved 67.59% keystrokes, with the
correction process taken into account. Participants also reported
that they perceived lower physical and temporal demand while
spending less effort using LipType, but the mental demand became
higher instead. This result is within our expectations as typing
word initials during text entry introduces additional learning costs,
as users have little experience with this novel input method. We be-
lieve that both the mental demand and the user’s performance will
be further improved during day-to-day use, envisioning a future
where the bandwidth of human-Al communication can be boosted
by our approach with no privacy concerns or social acceptance
issues.

This work makes four key contributions. To summarize, we

1. proposed a new multimodal training paradigm that uses an
LLM to take word initials and videos as input for silent speech
recognition,

2. performed a thorough offline test to evaluate the performance
of the word initials conditioned VSR model and find implications,

3. developed a prototype on mobile devices that assists users
in typing word initials while speaking, integrated with candidate
suggestion and auto-correction features,

4. conducted a user study with traditional typing as the baseline,
measuring the proposed method’s performance in terms of input
speed and workload.

2 Related Work

To bridge the gap between conventional typing and silent speech
research, we first review related work in text entry techniques on
mobile devices and silent speech recognition methods and inter-
faces.

2.1 Text entry techniques on mobile devices

Improving the efficiency of text entry on mobile devices with con-
strained keyboard size has been a longstanding focus of HCI re-
search. Early work pioneered optimizing the keyboard layout [4,
32, 56] and designing gesture-based typing techniques [5, 57]. As
machine learning technology advances, researchers have devel-
oped more sophisticated models to decode keyboard input with
errors [35] or recognize on-keyboard gestures for text editing. Fur-
thermore, language models (LMs) are trained on large corpora and
used to suggest erroneous texts 8, 58] or perform automatic cor-
rections at the phrase level as the user keeps typing [59]. Those
keyboard-only techniques have less learning cost and don’t re-
quire additional equipment. However, they still rely on massive
keystrokes and fall short in input speed. In response, T. Li et al.
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developed a specialized LM to decode abbreviated input and save
keystrokes [27]. Similarly, SkipWriter enables abbreviated hand-
writing input [54] with an LLM decoder to save motor movements.
However, the abbreviated forms of words contain substantial am-
biguity, which provides limited recognition accuracy and leads to
additional effort due to error correction.

Seeking better efficiency, efforts to integrate multiple sensors
and input channels for text entry have also provided magnitude
insights. For example, TAGSwipe [26] combines gaze swiping and
touch and uses a button to confirm selection or indicate the start
and the end of a swipe gesture. Hummer [17] pushes forward this
idea for hands-free text entry by using humming sounds to re-
place touch input. Multimodal voice-based techniques are the most
related to our work, which benefits from the natural, fast, and easy-
to-learn nature of human speech. B. Suhm et al. [46] proposed a
system to enable cross-modal repeating with pen gestures to correct
recognition errors, which outperformed keyboard and mouse input.
EyeSayCorrect [61] allows the user to locate the misrecognized
words with gaze and perform corrections by respeaking. K. Sim
investigated the approach of augmenting speech modality with
touch events [41, 42], which adopts a similar route to our work.
They thoroughly discussed the possible integration forms of speech
and touch, including an initial letter of word vs. boundary of sen-
tences, touch keyboard vs. gesture keyboard, and isolated input
(word by word) vs. continuous input, and found the error rate was
reduced when decoding speech with touch events. This body of
research provided valuable insights into the design space of multi-
modal speech and touch text entry interface as silent speech and
speech share similar implications in many aspects. For example,
touch input can result in slower speech speed, and fuzzy letters
will multiply the unreliability of early-stage speech recognition
models. However, since most results were acquired from simulated
data, the usability of such interaction in real world remains un-
derstudied. Furthermore, the rapid evolution of Automatic Speech
Recognition (ASR) models in recent years has pushed forward the
speech recognition performance to human levels, which makes it
less effective to incorporate touch input during the decoding stage.
In contrast, silent speech holds the promise of seamless and privacy-
preserving communication between humans and computers, but
the inherent ambiguity of visual speech remains a significant bar-
rier to large-vocabulary continuous recognition. In this work, we
aim to develop a high-performance recognizer to enable real-world
feasibility, thereby conducting a detailed user study to shed new
light on the usability and implications of the combination of silent
speech and touch input.

2.2 Silent Speech Recognition Interfaces and
Methods

Silent speech interfaces (SSIs) have explored a range of sensing
methods to capture the underlying biosignals associated with speech
production. SSIs are designed to enable confidential and natural
communication by interpreting speech-related signals without re-
lying on audible sound. A variety of sensing techniques have been
investigated over the years. For example, electromagnetic artic-
ulography (EMA) [12, 15, 40] has been used to track the move-
ments of speech articulators, while ultrasound imaging offers a
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means to visualize vocal tract and tongue dynamics [19, 23-25].
Other approaches include capturing subtle acoustic signals like
non-audible murmur (NAM) and ingressive speech [48, 49], which
involve sensors tuned to pick up sounds that are typically too faint
for conventional microphones. Further sensor modalities extend
to placing capacitive sensors inside the mouth to directly mea-
sure articulator movements [22] and using surface electromyog-
raphy (SEMG) to capture the electrical activity of facial muscles
during speech [21]. Yet, among all these approaches, lipreading-
based SSIs have attracted significant research interest due to their
non-intrusive nature and potential for mobile deployment. Besides
RGB cameras [44, 47], infrared cameras [60] and depth cameras [52]
are used for low-light environments and privacy protection. How-
ever, most research focuses on command-level recognition [43, 45],
as continuous word-level recognition is challenging, and even large
models with Transformer backbones [50] can suffer more than
50% WER in real-world applications. Therefore, we consider that it
might not be feasible to pretrain a one-size-fits-all lip-reading model
that has robust recognition with only video input. In response, we
propose using a multimodal approach to complement silent speech
with word initials as priors with minimal additional effort and take
advantage of the latest advances in natural language processing
research.

3 Initials Conditioned LLM for Visual Speech
Recognition

3.1 Model Architecture

Large language models trained on a vast amount of text data have
shown great potential in understanding human language, and re-
cent research on integrating speech recognition models with LLMs
has suggested its effectiveness in assisting speech dictation. We
draw inspiration from recent papers in ASR [29] and build a new
learning pipeline fuse video and initial letters embeddings to condi-
tion the LLM decoder. As shown in Figure 2, we freeze a pretrained
VSR model to encode lip videos and only train a lightweight lin-
ear projector to align the visual speech embeddings to the same
latent space of the LLM’s text embeddings. We borrow the best
open-source VSR model from Auto-AVSR [28], which produces a
768-dimension feature vector at each time step ¢, i.e., a video frame.
Since the sample rate of a video (usually 25 fps in VSR research) is
much higher than the speech content represented as text tokens
and could dominate the prompt, a downsampling layer of factor 2 is
used to unfold the feature vectors, resulting in a visual embedding
of shape [T/2,1536].

For the LLM module, we use the LLaMA 3.2 model family [11],
keeping the learned parameters with a low-rank adapter (LoRA) [18]
as the only trainable module, so as to preserve its knowledge
and mitigate overfitting. The visual embeddings V are inserted
into a prompt template following the LLaMA 3 prompt format!:
"< |start_header_id| >user< |end_header_id| > <V>, transcribe
the lip video to text with the initial letters <I>< |eot_id| ><
|start_header_id| >assistant< |end_header_id| >", where <I> rep-
resents the initial letters, concatenated with spaces in upper case,
and < |eot_id| > stands for the end of the turn. We empirically set

!See https://www.llama.com/docs/model-cards-and-prompt-formats/meta-llama-3/
for details
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Figure 2: The architecture overview of the VSR-LLM integration conditioned by initial letters.

the LoRA adapter’s rank and alpha to 128 with a dropout rate of 0.1,
and use a hidden size of 2048 for the projector of the VSR encoder.

3.2 Lip-reading Datasets and Training Details

To train the proposed model, we use publicly available lip-reading
datasets LRS2 [1] and LRS3 [2], which in total provide 818 hours
of video data. Those datasets are extracted from the BBC TV pro-
gram and TED talks and are widely used in VSR research for model
training and benchmark purposes. Our preprocessing procedure
splits long videos into clips with a maximum duration of 8 sec-
onds to match the expected input scenarios, where the user speaks
sentence by sentence so they can perform corrections if needed.
We segment the lip region on the speaker’s face using the Reti-
naface [9] landmark detector, following the same procedure in the
Auto-AVSR paper. While the word initials are extracted from the
transcriptions to facilitate subsequent data loading. Note that we
excluded clips containing numbers that present as Arabic numerals,
as they usually read as multiple words, making it difficult to accu-
rately translate them into written-out forms in order to find the
corresponding initial letters. Furthermore, the texts are formatted
in lowercase, except for the word "I" and abbreviations containing
it (e.g., "T'm," "T've," etc.). As a result, 31490 out of 478460 samples
are screened out.

For training, we use both the pre-training and training subsets
of LRS3, leaving the test set exclusively for evaluation. The model
is trained for 30 epochs using the Adam optimizer [10], with hy-
perparameters 1 = 0.9 and f2 = 0.999. The initial learning rate
is 1e-3 and is reduced gradually by a CosineAnnealingLR sched-
uler [7]. Both the training and inference pipelines use the PyTorch
and Huggingface’s Transformers [53] frameworks.

3.3 Offline Model Evaluation

The test set of the LRS3 dataset was used to evaluate the model’s
performance and compare it with the Auto-AVSR model as a base-
line. We also investigated how the initial prior, the size of the LLM,
and different prompt alternatives would impact the model’s perfor-
mance. Table 1 shows the model performance in Character Error
Rate (CER) and Word Error Rate (WER) measures, along with the
accuracy of generating corresponding word initials.

3.3.1 Effect of Word Initials as Priors. By adding word initials in the
prompt as conditions, our model achieved a WER of 9.33%, which is
a54.04% relative improvement compared to the baseline model. This
result suggests that combining an LLM decoder with VSR models
can efficiently leverage the prior information from word initials to
generate more accurate texts. Next, we conducted an ablation study
by removing the other text prompts (i.e., the transcribe the lip video
to text with the initial letters: part) and found that the WER dropped
slightly to 9.47%. We still decide to keep those extra prompts for
our prototype implementation because they are always fixed and
only cause a small part of computational costs.

To investigate if the improvements come from the LLM alone,
we then excluded all text prompts, including the word initials. In
this case, the model only achieved a WER of 27.9%, confirming
the effect of word initials as priors. We also noticed that, in this
case, the performance is worse than the baseline model, although
they share the same pretrained video encoder. However, the LLM
decoder in our model is only fine-tuned on the LRS2 and LRS3
datasets, while the whole baseline model is trained with a much
larger dataset with 5 times longer video hours. Unfortunately, since
the authors did not open the additional dataset that they acquired
by transcribing unannotated videos, we were unable to investigate
how much our model would improve with more training data. Even
so, the promising results with word initials indicate that our method
is highly data-efficient and has huge room to improve as more data
becomes available.

3.3.2  Effect of Model Size. We build alternatives using LLaMA-
3.2-3B-Instruct and LLaMA-3.2-1B-Instruct models [11]. The WER
reached 9.33% for the 3B model and 15.5% for the 1B model, indi-
cating that neural networks with more learnable parameters can
provide better performance. Even larger models are not studied
due to excessive training costs and latency in real-time inference
scenarios. We also tested the inference time for each model size.
On a desktop PC with an RTX 3090 GPU, the 3B model takes 367
ms to decode a 5s video (150 frames) using a beam size of 10, while
the 1B takes 226 ms. Considering that the response times on mobile
devices for visual stimuli range in 320 + 43 ms [55], we believe
using the 3B model can have little impact on the input speed while
significantly reducing the errors.
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Table 1: CER and WER performance of different models. The last two rows are ablation test results. Ours — prompts means no
extra prompts were used except for word initials. Ours — word intials means the model only uses visual speech embeddings to

decode.

Method Pretrained LLM CER(%) WER(%) Initials Accuracy (%)
Auto-AVSR [28] - 14.52 20.3 -

Ours LLaMA-3.2-1B-Instruct 10.1 15.5 75.3

Ours LLaMA-3.2-3B-Instruct 5.91 9.33 99.3

Ours — prompts LLaMA-3.2-3B-Instruct 6.07 9.47 99.5

Ours — word initials LLaMA-3.2-3B-Instruct 18.6 27.9 50.4

3.3.3  Performance in Following Word Initials. To investigate how
well the model learned to follow the word initials, we calculate
the frequency of recognition results that strictly match the prompt.
Without word initials, the model only achieves an accuracy of 50.4%.
The 3B model achieves remarkable performance with an accuracy
of 99.1%, while the 1B model falls short in this evaluation and only
achieves an accuracy of 75.3%.

The results from the offline evaluation and analysis suggest that
LLM can understand and follow the initials hint in a late fusion way,
where the features from video and text are simply concatenated
in the decoding stage. Since the 3B model has shown the best
performance and works in nearly real-time, we choose to use this
model to build a research prototype and investigate its usability in
practice.

4 LipType: Multimodal Input Method using
Silent Speech and Typing

LipType integrates the initials-conditioned VSR model in a mobile
app to enable an efficient and fast text input experience. The follow-
ing design factors are considered when developing our prototype.

4.1 Subvocalize-as-you-type

As shown in Figure 3, we use Swift and the Xcode IDE to implement
a notepad-like app on iOS that also provides fundamental text entry
and editing functions. When the user types the first character in
a new sentence, the system is activated and starts to use the front
camera to capture images of the user’s face. After finishing both
typing and speech input, the user presses the return key on the
bottom right corner of the keyboard to query recognition results.
Note that the speech and word initials input don’t necessarily have
to be strictly synchronized with each other, and our design is in-
tended to exclude non-speech parts in the video for better efficiency
and accuracy. The typed initial letters are shown in uppercase with
spacing to facilitate verification. We use a socket connection proto-
col [16] to send the JPEG-compressed frames along with the word
initials over local WiFi networks in real time. On a GPU server, the
lip regions are extracted using the same Retinaface [9] detector and
saved in a buffer for later inference.

4.2 Initials-constrained Beam Search

As discussed in Section 3.3.3, although our model has shown promis-
ing performance in decoding silent speech with word initials, there
is still a small possibility that the generated text doesn’t perfectly
match the condition. Therefore, we develop an initials-constrained

beam search algorithm by only allowing certain tokens at each
decoding stop with a straightforward implementation: for each
step ¢, the model can only generate a token T € A, where it either
adds a new word that fulfills the word-initials constrain (i.e., starts
with a space character and followed by the next initial letter) or
continues to be part of the previous word (i.e., starts with any other
character except for space). We use regex representations to find
the allowed token for each alphabet as the initial letter in advance
to avoid additional computational costs during inference. During
beam search, the probabilities of not allowed tokens are suppressed
to —inf. In this way, the generated texts are always forced to fol-
low the word initials, and we found that WER was reduced from
9.33% to 9.19% in the offline test. Although this improvement in
recognition performance is marginal, it is important to eliminate
unwanted behaviors for a reliable user experience. We empirically
set the beam size to 10 and the maximum number of new tokens to
generate to 20 by trading off the additional latency and accuracy.

4.3 Editing with Candidate Suggestions and
Auto-correction

When recognition errors occur in the transcribed text, rather than
deleting and retyping the entire word, the user can tap on the word
to query for candidates and then select the appropriate replacement
from the suggestion bar above the keyboard. During this process,
the model preserves the existing visual and prompt embeddings
and then performs a prefix-constrained beam search that leverages
preceding words as prior context to improve accuracy. This method
provides unique efficiency in LipType, because the word initials not
only narrow the search space but also indicate the exact number
of words in the sentence, ensuring a one-to-one correspondence
between the recognized and intended words. Therefore, users can
quickly spot errors and apply corrections. If the intended word is
not among the model’s suggestions, the user will need to use typing
as a fallback.

Once corrections are completed, the model performs another
prefix-constrained beam search to update the remaining words
as ambiguity decreases. This automatic update is triggered either
when a candidate is selected or when the user finishes typing a
word (as indicated by pressing the space key).

5 User Study

We conducted a user study with text entry tasks to investigate the
proposed method’s performance in supporting efficient input on
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Figure 3: The prototype interface and the user study setup. (A) The prompt of phraseset and the initial screen before starting to
input. There is a redo button, a microphone button that indicates the recording status, and a next button to proceed to the
next phrase. (B) When the user starts to type, the prompt will be hidden, and the word initials will be shown in the toolbar
at the top of the keyboard. The initial letters are editable during this process. The microphone button turns red to indicate
that the speech is being recorded via the camera. (C) The user selects a misrecognized word to solicit candidates. If the desired
word is not suggested, the they need to manually type it. (D) The user accepts the suggested candidate. (E) Following manual or
candidate correction, the model will perform a new beam search with the confirmed prefix and update the remaining words.

smartphones. Furthermore, we expect that LipType can substan-
tially save keystrokes, which can serve as an efficient input method
even in one-handed situations. This feature makes the proposed
interface not only friendly to handicapped people but also useful
when the user is experiencing situational disabilities, e.g., when
they are holding bags with one hand or cooking in the kitchen.
Therefore, we evaluated LipType against traditional typing (also
referred to as Type in this paper) in four text entry conditions: 1)
Two-handed LipType, 2) Two-handed Type, 3) One-handed LipType,
and 4) One-handed Type.

5.1 Apparatus and Participants

This study received approval from the university’s Institutional
Review Board (IRB). All participants provided informed consent by
signing an IRB-approved consent form prior to their participation.
Data was collected using an iPhone 15 Pro running iOS 18.2 with
a 6.1-inch screen, a common size for modern smartphones. The
device’s camera was configured to capture images at a resolution of
1280 X 720 pixels and a frame rate of 30 fps. The deep learning back-
end was hosted on a desktop PC equipped with an NVIDIA RTX
3090 GPU, running Ubuntu 24.04. We recruited 16 participants (10
males and 6 females, aged between 22-30) from the local community
through word-of-mouth. Of these, three were native or bilingual
English speakers, while the remaining participants self-reported in-
termediate English proficiency. All participants indicated frequent
experience with virtual keyboard typing on touchscreen smart-
phones for daily or work-related tasks.

We constructed our phrase set by randomly selecting utterances
without replacement from the LRS3 test set. This dataset comprises

TED talk transcripts, reflecting the vocabulary and structure of
natural spoken communication. To approximate everyday text entry
tasks such as SMS dictation, where speech input has demonstrated
the best efficiency with a small amount of text to be entered [20],
we further refined our study corpus to contain phrases with a
constrained word count. For each session, we selected 6 phrases for
each length ranging from 3 to 10 words, totaling up to 6 X 8 = 48
phrases. Texts are shown in lowercase, and most punctuations are
removed except for the apostrophe mark, as we focus more on the
word-level performance. We also As shown in Figure 3, the phrases
are prompted on the top of the interface at the beginning of each
trial. To simulate real scenarios where the participant types out
the words in their mind, we hide the prompt as soon as the user
presses the virtual keyboard. In this way, they had to remember the
whole sentence before starting to type and could copy the word
initials by watching the prompt. This is necessary as it ensures that
the process of thinking of the initials is taken into account when
measuring the input time.

There are three buttons in the middle of the text area for con-
trolling the experiment process. The redo button resets the timer
as well as the recorded frames, which is used when the partici-
pant fails to follow the rules or to say the phrase correctly. The
microphone button turns red when the system is capturing frames
for lip-reading to indicate the recording status. The next button
submits the current result and moves to the next trial.

Finally, to counterbalance the experimental conditions and mit-
igate interaction effects, we employed a 2 (posture: two-handed
vs. one-handed) x 2 (input method: Liptype vs. traditional typing)
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factorial design. Note that although there are four distinct condi-
tions, we did not counterbalance them as a single set (i.e., P(4,4));
instead, we treated the two factors separately. With 16 participants,
this resulted in 4 subjects per order (i.e., 16 + 4 = 4).

5.2 Procedure

[ Study Introduction ]
A 4
[ Text Entry Task x 4 ]

Counterbalanced among participants
48 phrases in each task

..... | SRRSO SOOIV P S
! 2handed i I-handed i} 2-handed ! I-handed :
i LipType 1 Type 1 LpType }: Type |
""" grTTTT TR oThTUETUTTT TTPITTTCYC
NASA-TLX Questionnaire
A 4
[ Silent Speech Only Task ]
v
[ SUS Questionnaire ]

Figure 4: User study procedure shown in a diagram.

The whole user study was conducted in a lab environment with
good light conditions. At the beginning of the study, we gave a brief
introduction to the participants and collected consent forms. Next,
the participant was asked to sit on a chair with armrests. Before
each session, they had 5 minutes to learn to use the input method
under the instructions from the experimenter. For practice purposes,
we used a different corpus than the phrase sets mentioned before
to avoid participants becoming familiar with or memorizing the
stimulus that would be used in the test phase. Since the prompt was
hidden during input, participants might struggle with remembering
the phrase and fail to finish. Therefore, they were allowed to use
the redo key to check the prompt again and start over. However,
the prompt would not be hidden anymore if they failed three times
in a row in one trial. The prompt would also be visible again for
verification when the participant pressed the return key to indicate
completion, but they could still correct errors, if any. Finally, we
asked the participants to perform the task as fast and accurately as
they could. Four sessions were carried out, and each corresponded
to one of the input conditions. Note that for the one-handed sessions,
participants only used their dominant hand (all participants were
right-handed) to perform the task. However, if it was too difficult
(fatigue, inability to reach certain keys, etc.) for them to continue,
they were allowed to put the phone on a magnetic holder but still
use only one hand to grasp and tap on the screen.
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After each session, the participant was asked to complete a paired
NASA TLX questionnaire for workload evaluation. Finally, a SUS
usability test was conducted and subjective feedback was collected
to find qualitative insights.

We were also curious whether the word initials input would slow
down the user’s speaking speed and further lead to a performance
drop in our VSR-LLM model, especially compared to speech-only
input. Therefore, we used another 48-phrase corpus, which was
also randomly selected from the LRS3 test set following the same
protocol, and asked the participant to silently articulate the phrases
without typing. Since we only wanted to measure the speech WPM,
neither recognition nor correction was performed in this session.

5.3 Quantitative Measures and Results

During the study, we used the following measures and logged the
corresponding data for calculation. All results are reported in Ta-
ble 2 and illustrated in Fig 5.

5.3.1 Word Per Minute. WPM is a common measure of the input
speed. We recorded the timestamp of the first key event as the start
time and defined the finish time as the moment when the text was
last modified. With those timestamps, we calculate the input time
in seconds for each trial. Given that in HCI literature, the definition
of a "word" in the context of WPM is five characters (including
spaces) [31], the WPM is defined as

Number of Characters 60
5 % Input Time

First, we confirmed that the data within each factor combination
could pass the Shapiro-Wilk normality test. We then performed
two-way ANOVA and found a significant main effect for the Input
Method factor (F(1,60) = 14.07, p = .0004 < .001, r]lzj =.19) but
no significant interaction effect F(1,60) = 0.25, p = .621, r]zzj =
.004. Given the higher average WER for LipType, we conclude that
LipType results in faster input speed regardless of whether one or
two hands are used. To further investigate the impact of LipType in
each posture, independent t-tests were conducted separately, and
significant differences were found for both two-handed (t = 2.15,
p = .039 < .05, d = 0.76) and one-handed conditions (t(15) =
3.23, p = .003 < .01, d = 1.14). The effect of Input Method was
even stronger for the latter condition, suggesting that LipType led
to a larger performance gain when users typed with one hand.
Furthermore, while one-handed typing is 13.8% slower than two-
handed typing, this gap is only 6.98% for LipType.

WPM =

5.3.2  Keystrokes Per Character (KSPC). KSPC is an important indi-
cator of the given text entry technique’s efficiency, and it is defined
as the number of keystrokes, on average, to generate each charac-
ter of text [30]. Ideally, the KSPC of the mini QWERTY keyboard
should be equal to 1 if we set aside the shift keys and other punctu-
ations. In this study, we consider all screen touch events, including
keyboard taps, cursor relocation, and candidate query/selection as
keystrokes. Therefore, KSPC is defined as

Number of Keystrokes
Number of Characters

A two-way ANOVA indicates that LipType required significantly
fewer keystrokes per character than Type, where F(1, 60) = 584.22,

KSPC =
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Table 2: The quantitative results of WPM, KSPC, and Uncorrected WER. Numbers in the parentheses indicate the standard

deviation.
Two-handed One-handed
Input Method LipType Type LipType Type
WPM 42.96 (13.30) 33.98 (9.98) 40.23 (13.25) 28.52 (5.87)
KSPC 0.34(0.07)  1.13(0.09)  0.37(0.12)  1.03(0.17)
Uncorrected WER (%) 2.64 (2.20)  0.78 (0.13) 2.74 (2.98)  0.16 (0.34)
Word Per Minute Keystrokes Per Character Uncorrected Word Error Rate
14 [ LipType 2-handed
60 12 0.1 ~ LipType 1-handed
' O Type 2-handed
50 1 0.08 [ Type 1-handed
0.06
20 0.8
0.6 0.04
30
0.4 é 0.02 .
20 = 2
0.2 .
LipType Type LipType Type LipType Type

Figure 5: Box plots showing the distributions of the WPM, KSPC, and Uncorrected WER metrics. Circles represent outliers that

fall below 3x IQR below Q1 or above Q3.

Speech Phase WPM

160 0.4
140
0.3
120
100 0.2
80
0.1
60
0
LipType Silent Speech

LipType

Recognition Performance in WER

[0 LipType 2-handed
LipType 1-handed
Silent Speech only

Silent Speech

Figure 6: Box plots illustrating the speech input WPM and recognition performance of LipType and silent speech-only conditions.
Circles represent outliers that fall below 3x IQR below Q1 or above Q3. The silent speech WER was computed in an offline

manner after collecting data from the speech session.

p=1.27x10732 < .001, tyf, =.0.91. Overall, LipType saved around
67.59% keystrokes across two postures. Since there are also sig-
nificant interaction effects between Input Method and Posture
(F(1,60) = 4.53, p = .037 < .05, 175 = .07), we performed a post-hoc
pair-wise Tukey HSD to examine the differences among conditions.
The result implies significant differences between LipType and Type
for both two-handed and one-handed conditions (p < .001), con-
firming that our system consistently outperforms the traditional
type-only input method in terms of efficiency, even in constrained
scenarios.

5.3.3  Uncorrected Word Error Rate. Although we asked the partic-
ipants to make sure the input is accurate before proceeding to the
next trial, they might fail to find all errors. Especially for LipType,
we also logged the initial recognition results to compute the uncor-
rected WER along with the corrected WER. With S as the number
of substitutions, D as the number of deletions, I as the number
of insertions, and C as the number of correct words, WER can be
calculated with the following equation:

S+D+1

WER = ——
S+D+C
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Figure 7: (A) Joint plots with marginal histograms between Raw WER vs. WPM and Typing WPM vs. WPM for LipType. The
straight lines represent the linear regression functions with 95% confidence interval of the regression fit plotted in shadows.
(B) The proportion of three types of corrections, where the error is 1) corrected by selecting from candidate suggestions, 2)
automatically corrected when the user performed a suggested or manual correction, 3) manually corrected using the keyboard.

Via a 2-way ANOVA, we found that the uncorrected WER for
LipType is significantly higher than Type with F(1,60) = 30.64,
p < .001, 1712, = .34. No significant interaction was found between In-
put Method and Posture (F(1, 60) = 0.0003, p = .98, n}J =5.1x107°),
suggesting that the effect of Input Method on uncorrected WER was
consistent across both one-handed and two-handed conditions. Un-
like conventional typing, where users naturally verify and correct
each word during input, LipType requires users to review the entire
sentence retrospectively, resembling the behavior of voice input
interfaces. Previous research also revealed a fast memory decay of
speech production [33], and consequently, users are more likely to
overlook the errors in the dictated text with LipType, resulting in
higher uncorrected WER. This limitation is not unique to LipType.
Instead, similar results are reported in previous research comparing
speech input and typing [39].

5.3.4 Speech Speed and Recognition Performance. To investigate
whether typing the word initials and speaking at the same time will
slow down the user’s silent speech, we calculated the WPM dur-
ing the speech input phase for LipType sessions and silent speech
only sessions. Le., the recognition time and correction time were
excluded (Fig. 6). A one-way ANOVA test implies significant dif-
ferences between two-handed LipType, one-handed LipType, and
Silent Speech only (F(2,45) = 52.57, p = 2.8 x 10712 < .001,
n? = .71). A further Tukey’s HSD post-hoc analysis shows that
both two-handed LipType and one-handed LipType were signif-
icantly slower than the silent speech only condition (p < .001)
but have no significance to each other (p = .65). This result also
indicates that the word initials are easy to input even using only
one hand.

Next, we ran an offline test to see if the slowed-down speech
would result in degraded recognition performance for our model,
where the raw LipType WER before correction is reported. As a

result, the LipType WER was 18.89% + 10.60%, higher than speech-
only’s 12.23% =+ 5.65%. This is because the dataset that is used to
train our model consists of TV program videos, where the speaker
usually talks at a higher speed, and their face was captured from a
fixed camera at a distance. As a text entry method, we can easily
infer the ground truth as the user uses LipType, thereby enabling
model personalization to fill the gap between the distributions of
train and test data.

5.3.5 Effect of Recognition Accuracy and Typing Performance. We
investigate how the recognition accuracy of our model and the
user’s typing performance would impact the user’s input speed.
Fig 7 (A) shows the distribution between each of the two factors.
We calculate the Pearson Correlation Coefficient and found strong
negative correlation between Raw WER (the raw output from our
VSR-LLM model before corrections) and WPM for both two-handed
(r = —0.799, p < 0.001) and one-handed conditions (r = —0.845,
p < 0.001). This implies that the input speed can highly rely on the
recognition accuracy of silent speech, as lower WER results in fewer
correction operations. On the other hand, the user’s conventional
typing skills (represented by their WPM in Type sessions) show
a moderate positive correlation to their input speed with LipType
in two-handed conditions (r = —0.396, p = 0.129 > 0.05) and
a very weak positive correlation in one-handed conditions (r =
—0.102, p = 0.707 > 0.05) with no significance found. Therefore,
we infer that the user’s performance with LipType relies less on
their typing skills. With LipType, even people who have limited
typing experience on mobile devices can achieve comparable input
speed to experienced typing users.

5.3.6  Proportions of Correction Types. In Fig 7 (B), we illustrate
the proportions of each correction type, namely those that were 1)
corrected by selecting from candidate suggestions, 2) automatically
corrected when the user performed a suggested or manual correc-
tion, 3) manually corrected using the keyboard. Among all 1763
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Figure 8: Distribution of NASA-TLX workload ratings across different tasks, visualized using box plots. Lower scores represent
lower perceived workload. Asterisk markers indicate the significance level (**: p < 0.01).

corrections performed by 16 participants, auto-corrections had the
highest ratio (47.31%), while only 16.62% of the errors needed to
be manually corrected. This promising result shows that the word
initials not only helped the initial decoding of silent speech, but
also largely narrowed down the candidate scope during the later
editing process, ensuring efficiency by saving both input time and
keystrokes.

5.4 NASA TLX Ratings

In Figure 8, we summarize the participants’ subjective workload
ratings for each task, where lower scores indicate less perceived
workload and demand. Across both two-handed and one-handed
conditions, LipType consistently received better (lower) ratings than
Type for Physical Demand, Temporal Demand, and Effort. Two-
way ANOVAs revealed a significant main effect of input method on
Effort, with LipType rated as less effortful (M = 49.22, SD = 22.58)
than Type (M = 62.97,SD = 19.67), F(1,60) = 7.34,p = .008 <
.01, r]f, = .11. The interaction effect for Effort was not significant
(F(1,60) = 1.37,p = .25 > .05, 1712, = .02), indicating this effect
was consistent across typing postures. Although the main effect
of input method on Physical Demand did not reach statistical sig-
nificance (F(1,60) = 1.79,p = .185, 1712, = .03), LipType was rated
as less physically demanding on average (M = 54.53,SD = 26.98)
compared to Type (M = 61.72,SD = 28.78). Notably, the rela-
tively higher F-value for Physical Demand compared to other non-
significant workload dimensions suggests a trend in this direction,
although the dominant factor for Physical Demand was the typing
posture, as indicated by a significant main effect (F(1, 60) = 44.02,
p=1.05x10"8 < 001, 1712, = .42). No significant main effects of
input method were found for Mental Demand (MLipT ype = 47.81,
SD = 23.89; Mrype = 52.81, SD = 21.51), Temporal Demand
(MLipType = 49.53, SD = 26.86; Mrype = 56.56, SD = 22.98),
Performance (MpjpType = 35.16, SD = 21.35; Mrype = 38.44,
SD = 23.12), or Frustration (MpipType = 40.94, SD = 23.1%;
Mrype = 42.34, SD = 24.82). Despite the lack of statistical sig-
nificance for these dimensions, the consistently lower means for
LipType across all workload categories suggest a tendency towards
a reduced overall workload compared to Type.

5.5 System Usability Scale Scores and Subjective
Feedback

Score=2  Score=3 m Score=4 m Score=5

1 think that | would like to use this system frequently.

o ]
* | found the system unnecessarily complex.

9 I
| thought the system was easy to use.

@ I
* | think that | would need the support of a technical person to be able to use this system.

o I
| found the various functions in this system were well integrated.

as =
* | thought there was too much inconsistency in this system.

s I
| would imagine that most people would learn to use this system very quickly.

a —
* 1 found the system very cumbersome to use.

s -
| felt very confident using the system.

as I
* I needed to learn a lot of things before | could get going with this system.

0% 25% 50% 75% 100%

Figure 9: The overview of the SUS results. For better visualiza-
tion, we reversed the score for negatively worded questions
(Q2, Q4, Q6, Q8, and Q10, indicated with asterisk markers).

The user study concluded with a SUS test, and we noted down
if the participant had any additional feedback. As shown in Fig 9,
the result suggests generally positive feedback on usability with
an average score of 72.625 (SD=9.54), which means it is considered
highly usable and easy to learn. P8 expressed, "I really want to
use this system (LipType) when I'm commuting on the subway." P10
felt that their English language proficiency was limited and had a
negative impact on the performance: "I can speak and type much
faster if I use my native language (Chinese)." On the other hand, the
model achieved the best raw WER on P1, who is a native English
speaker, and they were very confident using the system and said
that "I would like to use it as my default app for texting." We also
received concerns about privacy issues when the participant learned
how the system works. "I don’t want to turn on the front camera in
public (P5)" However, after explaining that only the mouth area of
the video was used for recognition, they changed their perspective
but insisted: "I want to make sure it doesn’t upload my data to some
remote cloud servers."
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All participants fully understood how to use the system after the
experimenter’s demonstration and a short period of practice. P14
said, "I found this interaction very natural to me because I usually
read aloud in my mind when typing."” However, some other partici-
pants reported that they felt their speaking speed was slowed down
when trying to recall and type the initial letters. We believe that
although LipType, as a novel text entry method, definitely intro-
duces additional learning costs, it aligns with human nature and
can serve as a day-to-day technology.

6 Discussion, Limitations, and Future Work

We discuss insights from the system development and user study,
outline the limitations of current implementation, and shed new
light on the directions for future work.

6.1 The Future of Silent Speech for Text Entry

Despite silent speech interfaces have been studied for years, text-
entry applications are still challenging due to limited recognition
performance. Lip-reading based methods are promising because of
rich training data; however, the best available model produces an or-
der of magnitude more errors compared to the best ASR model [38].
The inherent difficulty of lip-reading stems from the ambiguity
of visemes and the manifold data distribution resulting from dif-
ferent camera angles. Therefore, we consider the possibility that
eventually, lip-reading models will face a lower upper limit of recog-
nition performance, making it not feasible to build a general model
that can work out-of-the-box for everyone and achieve sufficient
recognition performance as a standalone input method.

In this work, we take a novel approach to integrate additional in-
put channels, namely initial typing, to exploit silent speech despite
its ambiguity. LipType not only provides a practical method to en-
able private and efficient text input with current lip-reading models,
but it also has the potential to bring personalized models into real-
ity without placing an extra burden on users. Text entry tasks that
happen during daily activities, such as messaging, document writ-
ing, and note-taking, are usually double-checked by the user. The
ground truth can be easily acquired by assuming the final results
are mostly correct. In this way, we no longer need a dedicated data
collection process, which can be tedious and time-consuming, as it
is possible to collect sufficient data during day-to-day use and build
a model that is specialized for a single person. As the recognition
performance improves over time, eventually, word initials can be
omitted when the model has a high confidence and only required
in a post-hoc manner. We envision this human-in-the-loop process
is the key to democratizing silent speech without pain.

6.2 Recognition with Fuzzy Word Initials and
Numbers

One major limitation of our user study is that we asked the partici-
pants to enter the word initials perfectly, and they had to redo the
trial if errors were found. Especially for longer sentences, it can be
difficult to always make sure the initial letters are correct. To achieve
a better user experience, we need to enable the model to tolerate
such noise to mitigate friction. We set off by case-studying the data
from the user study to find frequent errors in the word-initial input.
As shown in Table 3, we show examples of Substitution, Delete,
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and Insert errors when the user fails to type the right initials (those
are not final results as the user re-tried after an error was detected).
Typical substitution cases seem due to the unpronounced letter in
the word (e.g., the letter "K" in "know") or the consonant at the
end of the word. Delete errors share a less common pattern, simply
caused by missing one or more words in the sentence. Most insert
errors appear when the user accidentally typed out the abbreviated
word (letter "A" in "they’re" and letter "I" in "there’s"). We attempt
to cope with this problem by synthesizing fuzzy word initials in
the training data.

Specifically, with a probability of 0.25, we randomly remove a
letter, substitute a letter with its neighboring letter, or duplicate a
letter in the ground truth. The new model was trained following
the same procedure as described in 3.2, and we performed two tests
on the LRS3 test set. For the first run, there was no alternation for
the initial letters, and for the second run, at least one letter for each
sentence was altered using the same data augmentation. Results
show that the model achieved a WER of 13.83% on altered initial
letters while keeping the same level of 9.43%. This promising result
suggests that the model can be trained to tackle fuzzy initials with
little harm to normal input. We envision that by expanding the
training data corpus, it is possible to enable flexible input, where
only a small part of word initials as hints will provide sufficient
accuracy. The user only needs to disambiguate words that have
the same visemes, e.g., indicate the letter "b" for the word "bark" to
avoid "park”, and leave alone the rest of the words.

Furthermore, in this work, we excluded Arabic numerals from
both the training dataset and the corpus used in the user study.
However, numbers originally written out in words were retained,
allowing the model to still recognize and process numerical in-
formation to some extent, and the user study results still capture
the effect of numerical text entry. Nonetheless, it is important to
acknowledge that the current model is trained on limited numerical
data and is unable to generate Arabic numerals. In future work,
we plan to leverage advanced methods such as LLMs to accurately
convert numbers into written English words. This approach will
enable the extraction of corresponding word initials, which expands
the available training data and holds the potential to support Arabic
numeral text input.

6.3 Longitudinal and In-the-wild Study

The text entry task highly relies on the user’s level of experience.
Therefore, to fully understand the implications of multimodal silent
speech and typing input, a long-term out-of-the-lab study is impor-
tant. Most people have become familiar with conventional typing
on mini QWERTY keyboards due to the popularization of smart-
phones. However, the user study in this work only demonstrated
our prototype’s usability in the hands-on stage. Future work de-
mands a thorough study on the learning curve and potential risks
of prolonged use, which should be done by tracking the user’s per-
formance on a weekly scale. One of the biggest barriers is that the
current model is still heavy and can only run on high-end GPU
machines, which are only available in locations with reliable local
network connections. With the advancement of efficient LLMs for
edge devices, we plan to optimize our model for on-device inference
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Table 3: Typical errors in word-initial inputs.

Sentence User input  Correct Initials  Error Type
I don’t know IDN IDK Substitution
Thank you very much TKVM TYVM Substitution
She found us we found her disease SFUFHD  SFUWFHD Delete
They had her scanned inside out THHSI THHSIO Delete
They’re not my children TANMC TNMC Insert
There’s no structure TINS TNS Insert

using techniques such as quantization [14] and knowledge distilla-
tion. Following the validation of models suitable for deployment
on resource-constrained devices, it will be crucial to conduct an
in-the-wild study to gain insights into performance and usability
in real-world scenarios.

We used the most commonly used datasets, LRS2 and LRS3,
to train the embedding projection layers and LoRA adapter in our
model. They are at scale and contain data from diverse speakers and
backgrounds; however, TED talks are well-rehearsed, presented in
front of an audience, and timed, thus not fully capturing the nature
of spontaneous social communication. Note that although we also
used the LRS3 corpus in the user study, video data was recorded
on the phone during the user’s typing and should provide a closer
approximation to real-world scenarios. We consider the domain gap
between the training data and actual use cases of our system to be
a principal factor contributing to the observed performance decline
when comparing the results from the offline experiments with
those from the user study. In addition, varying lighting conditions
or blurry videos are not studied in this work. Future work should
also focus on building dedicated visual speech datasets to improve
the model’s generalizability and establishing reliable benchmarks
for text entry tasks.

7 Conclusion

In this paper, we introduced a novel multimodal text entry system
that integrates silent speech recognition with word-initial input
on mobile devices. By leveraging a word-initials-conditioned LLM
fused with a visual speech encoder, our approach significantly im-
proves silent speech recognition accuracy while ensuring efficient
and private text entry. Through extensive offline evaluations, we
demonstrated that our method achieves a remarkable Word Er-
ror Rate (WER) reduction from 20.14% to 9.19%, outperforming
state-of-the-art VSR models.

We further developed a functional mobile prototype of LipType
to investigate its usability in text entry tasks. Our user study re-
vealed that LipType enables significantly faster input speed com-
pared to conventional typing on virtual keyboards, especially in
one-handed use cases where it achieved an average WPM of 41.80, a
35.32% improvement over traditional typing. Additionally, LipType
achieved an average keystroke savings of 67.59% while maintain-
ing a manageable error rate. Participants reported lower physical
demand and effort when using LipType, confirming the system’s
efficiency and potential for daily text entry tasks. Moreover, the

successful integration of word initials in the input process demon-
strated its effectiveness in disambiguating lip-reading outputs, fur-
ther validating our design choices.

Despite its advantages, LipType’s limitations include the require-
ment for precise word-initial input, which could be mitigated by
enabling tolerance for minor input mistakes. Additionally, real-
world deployment necessitates model optimization for on-device
inference to ensure lower latency and enhanced privacy. Future
work will explore long-term user adaptation, personalized model
fine-tuning, and cross-linguistic applications to expand LipType’s
usability.

In conclusion, this work presents a promising step toward prac-
tical silent speech-based text entry systems. By combining efficient
multimodal input with LLMs, our approach enhances both speed
and usability while maintaining privacy, paving the way for future
silent speech interaction on mobile devices.

Acknowledgments

This work was supported by JST Moonshot R&D Grant Number
JPMJMS2012 and JSPS KAKENHI Grant Number 24KJ0775. We
would further like to thank the participants for their involvement
in our user study and the anonymous reviewers for their valuable
and constructive feedback.

references

[1] Triantafyllos Afouras, Joon Son Chung, Andrew Senior, Oriol Vinyals, and An-
drew Zisserman. 2018. Deep audio-visual speech recognition. IEEE transactions
on pattern analysis and machine intelligence 44, 12 (2018), 8717-8727.
Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. 2018. LRS3-TED:
alarge-scale dataset for visual speech recognition. arXiv preprint arXiv:1809.00496
(2018).

Alan D Baddeley, Susan E Gathercole, and Costanza Papagno. 2017. The phono-

logical loop as a language learning device. Exploring working memory (2017),

164-198.

[4] Tom Bellman and I Scott MacKenzie. 1998. A probabilistic character layout

strategy for mobile text entry. In Graphics Interface, Vol. 98. 168-176.

Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin Zhai. 2012.

Bimanual gesture keyboard. In Proceedings of the 25th annual ACM symposium

on User interface software and technology. 137-146.

Vladimir V Bochkarev, Anna V Shevlyakova, and Valery D Solovyev. 2015. The

average word length dynamics as an indicator of cultural changes in society.

Social Evolution and History 14, 2 (2015), 153-175.

[7] PyTorch Contributors. 2024. CosineAnnealingLR. https://pytorch.org/docs/
stable/generated/torch.optim.Ir_scheduler.CosineAnnealingLR html. Accessed:
2025-02-27.

[8] Wenzhe Cui, Suwen Zhu, Mingrui Ray Zhang, H Andrew Schwartz, Jacob O
Wobbrock, and Xiaojun Bi. 2020. Justcorrect: Intelligent post hoc text correction
techniques on smartphones. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. 487-499.

[9] Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou.
2020. Retinaface: Single-shot multi-level face localisation in the wild. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
5203-5212.

[2

3

[5

G


https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html

Multimodal Silent Speech-based Text Entry with Word-initials Conditioned LLM

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28

[29]

[30]

[31

[32

P Kingma Diederik. 2014. Adam: A method for stochastic optimization. (No Title)
(2014).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).
Michael J Fagan, Stephen R Ell, James M Gilbert, E Sarrazin, and Peter M Chapman.
2008. Development of a (silent) speech recognition system for patients following
laryngectomy. Medical engineering & physics 30, 4 (2008), 419-425.

Cathy Mengying Fang, Phoebe Chua, Samantha Chan, Joanne Leong, Andria
Bao, and Pattie Maes. 2024. Leveraging AI-Generated Emotional Self-Voice to
Nudge People towards their Ideal Selves. arXiv preprint arXiv:2409.11531 (2024).
Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

Jose A Gonzalez, Lam A Cheah, James M Gilbert, Jie Bai, Stephen R Ell, Phil D
Green, and Roger K Moore. 2016. A silent speech system based on permanent
magnet articulography and direct synthesis. Computer Speech & Language 39
(2016), 67-87.

Robbie Hanson. n.d.. CocoaAsyncSocket. https://github.com/robbiehanson/
CocoaAsyncSocket. Accessed: February 5, 2025.

Ramin Hedeshy, Chandan Kumar, Raphael Menges, and Steffen Staab. 2021.
Hummer: Text Entry by Gaze and Hum. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (Yokohama, Japan) (CHI "21). Association
for Computing Machinery, New York, NY, USA, Article 741, 11 pages. https:
//doi.org/10.1145/3411764.3445501

Edward ] Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

Thomas Hueber, Elie-Laurent Benaroya, Gérard Chollet, Bruce Denby, Gérard
Dreyfus, and Maureen Stone. 2010. Development of a silent speech interface
driven by ultrasound and optical images of the tongue and lips. Speech Commu-
nication 52, 4 (2010), 288-300.

Razan Jaber and Donald McMillan. 2020. Conversational user interfaces on
mobile devices: Survey. In Proceedings of the 2nd Conference on Conversational
User Interfaces. 1-11.

Arnav Kapur, Shreyas Kapur, and Pattie Maes. 2018. Alterego: A personalized
wearable silent speech interface. In 23rd International conference on intelligent
user interfaces. 43-53.

Naoki Kimura, Tan Gemicioglu, Jonathan Womack, Richard Li, Yuhui Zhao,
Abdelkareem Bedri, Zixiong Su, Alex Olwal, Jun Rekimoto, and Thad Starner.
2022. SilentSpeller: Towards mobile, hands-free, silent speech text entry using
electropalatography. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. 1-19.

Naoki Kimura, Michinari Kono, and Jun Rekimoto. 2019. SottoVoce: an ultra-
sound imaging-based silent speech interaction using deep neural networks. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1-11.

Naoki Kimura, Zixiong Su, and Takaaki Saeki. 2020. End-to-End Deep Learning
Speech Recognition Model for Silent Speech Challenge.. In INTERSPEECH. 1025—
1026.

Naoki Kimura, Zixiong Su, Takaaki Saeki, and Jun Rekimoto. 2022. Ssr7000: A
synchronized corpus of ultrasound tongue imaging for end-to-end silent speech
recognition. In Proceedings of the Thirteenth Language Resources and Evaluation
Conference. 6866—6873.

Chandan Kumar, Ramin Hedeshy, I Scott MacKenzie, and Steffen Staab. 2020.
Tagswipe: Touch assisted gaze swipe for text entry. In Proceedings of the 2020 chi
conference on human factors in computing systems. 1-12.

Tianshi Li, Philip Quinn, and Shumin Zhai. 2023. C-PAK: correcting and com-
pleting variable-length prefix-based abbreviated keystrokes. ACM Transactions
on Computer-Human Interaction 30, 1 (2023), 1-35.

Pingchuan Ma, Alexandros Haliassos, Adriana Fernandez-Lopez, Honglie Chen,
Stavros Petridis, and Maja Pantic. 2023. Auto-avsr: Audio-visual speech recogni-
tion with automatic labels. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1-5.

Ziyang Ma, Guanrou Yang, Yifan Yang, Zhifu Gao, Jiaming Wang, Zhihao Du, Fan
Yu, Qian Chen, Sigi Zheng, Shiliang Zhang, et al. 2024. An Embarrassingly Simple
Approach for LLM with Strong ASR Capacity. arXiv preprint arXiv:2402.08846
(2024).

I Scott MacKenzie. 2002. KSPC (keystrokes per character) as a characteristic of
text entry techniques. In International Conference on Mobile Human-Computer
Interaction. Springer, 195-210.

I Scott MacKenzie and R William Soukoreff. 2002. Text entry for mobile comput-
ing: Models and methods, theory and practice. Human—Computer Interaction 17,
2-3 (2002), 147-198.

I Scott MacKenzie and Shawn X Zhang. 1999. The design and evaluation of
a high-performance soft keyboard. In Proceedings of the SIGCHI conference on
Human Factors in Computing Systems. 25-31.

CUI *25, July 08-10, 2025, Waterloo, ON, Canada

Brinda Mehra, Kejia Shen, Hen Chen Yen, and Can Liu. 2023. Gist and Verbatim:
Understanding Speech to Inform New Interfaces for Verbal Text Composition. In
Proceedings of the 5th International Conference on Conversational User Interfaces.
1-11.

Sadia Nowrin and Keith Vertanen. 2023. Programming by Voice: Exploring User
Preferences and Speaking Styles. In Proceedings of the 5th International Conference
on Conversational User Interfaces. 1-13.

Tom Ouyang, David Rybach, Francoise Beaufays, and Michael Riley. 2017. Mo-
bile keyboard input decoding with finite-state transducers. arXiv preprint
arXiv:1704.03987 (2017).

Akhil Padmanabha, Jessie Yuan, Janavi Gupta, Zulekha Karachiwalla, Carmel
Majidi, Henny Admoni, and Zackory Erickson. 2024. Voicepilot: Harnessing
LLMs as speech interfaces for physically assistive robots. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology. 1-18.
Anne Porbadnigk, Marek Wester, Jan-P Calliess, and Tanja Schultz. 2009. EEG-
based speech recognition.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. 2023. Robust speech recognition via large-scale weak supervision.
In International conference on machine learning. PMLR, 28492-28518.

Sherry Ruan, Jacob O Wobbrock, Kenny Liou, Andrew Ng, and James Landay.
2016. Speech is 3x faster than typing for english and mandarin text entry on
mobile devices. arXiv preprint arXiv:1608.07323 (2016).

Paul W Schénle, Klaus Gribe, Peter Wenig, Jorg Hohne, Jérg Schrader, and Bastian
Conrad. 1987. Electromagnetic articulography: Use of alternating magnetic fields
for tracking movements of multiple points inside and outside the vocal tract.
Brain and Language 31, 1 (1987), 26-35.

Khe Chai Sim. 2010. Haptic voice recognition: Augmenting speech modality
with touch events for efficient speech recognition. In 2010 IEEE spoken language
technology workshop. IEEE, 73-78.

Khe Chai Sim. 2012. Speak-as-you-swipe (SAYS) a multimodal interface combin-
ing speech and gesture keyboard synchronously for continuous mobile text entry.
In Proceedings of the 14th ACM international conference on Multimodal interaction.
555-560.

Zixiong Su, Shitao Fang, and Jun Rekimoto. 2022. LipLearner: Customizing
silent speech commands from voice input using one-shot lipreading. In Adjunct
Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. 1-3.

Zixiong Su, Shitao Fang, and Jun Rekimoto. 2023. LipLearner: Customizable
Silent Speech Interactions on Mobile Devices. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 696,
21 pages. https://doi.org/10.1145/3544548.3581465

Zixiong Su, Xinlei Zhang, Naoki Kimura, and Jun Rekimoto. 2021. Gaze+ Lip:
rapid, precise and expressive interactions combining gaze input and silent speech
commands for hands-free smart TV control. In ACM symposium on eye tracking
research and applications. 1-6.

Bernhard Suhm, Brad Myers, and Alex Waibel. 2001. Multimodal error correction
for speech user interfaces. ACM transactions on computer-human interaction
(TOCHI) 8, 1 (2001), 60-98.

Ke Sun, Chun Yu, Weinan Shi, Lan Liu, and Yuanchun Shi. 2018. Lip-interact:
Improving mobile device interaction with silent speech commands. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and Technology.
581-593.

Tomoki Toda, Mikihiro Nakagiri, and Kiyohiro Shikano. 2012. Statistical voice
conversion techniques for body-conducted unvoiced speech enhancement. IEEE
Transactions on Audio, Speech, and Language Processing 20, 9 (2012), 2505-2517.
Tomoki Toda, Keigo Nakamura, Hidehiko Sekimoto, and Kiyohiro Shikano. 2009.
Voice conversion for various types of body transmitted speech. In 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE, 3601—
3604.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
Jingxian Wang, Chengfeng Pan, Haojian Jin, Vaibhav Singh, Yash Jain, Jason I
Hong, Carmel Majidi, and Swarun Kumar. 2019. RFID tattoo: A wireless platform
for speech recognition. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 3, 4 (2019), 1-24.

Xue Wang, Zixiong Su, Jun Rekimoto, and Yang Zhang. 2024. Watch Your Mouth:
Silent Speech Recognition with Depth Sensing. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems. 1-15.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

Zheer Xu, Shanqing Cai, Mukund Varma T, Subhashini Venugopalan, and Shumin
Zhai. 2024. SkipWriter: LLM-Powered Abbreviated Writing on Tablets. In Proceed-
ings of the 37th Annual ACM Symposium on User Interface Software and Technology.
1-13.


https://github.com/robbiehanson/CocoaAsyncSocket
https://github.com/robbiehanson/CocoaAsyncSocket
https://doi.org/10.1145/3411764.3445501
https://doi.org/10.1145/3411764.3445501
https://doi.org/10.1145/3544548.3581465

CUI *25, July 08-10, 2025, Waterloo, ON, Canada

[55] Kyle T Yoshida, Joel X Kiernan, Allison M Okamura, and Cara M Nunez. 2023.

Exploring human response times to combinations of audio, haptic, and visual
stimuli from a mobile device. In 2023 IEEE World Haptics Conference (WHC). IEEE,
121-127.

Shumin Zhai, Michael Hunter, and Barton A Smith. 2002. Performance optimiza-
tion of virtual keyboards. Human—Computer Interaction 17, 2-3 (2002), 229-269.
Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand writing on stylus key-
board. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 97-104.

Mingrui Ray Zhang, He Wen, and Jacob O Wobbrock. 2019. Type, then correct:
Intelligent text correction techniques for mobile text entry using neural networks.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 843-855.

Zixiong Su, Shitao Fang, and Jun Rekimoto

[59] Mingrui Ray Zhang and Shumin Zhai. 2021. PhraseFlow: Designs and empirical

studies of phrase-level input. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. 1-13.

Ruidong Zhang, Mingyang Chen, Benjamin Steeper, Yaxuan Li, Zihan Yan, Yizhuo
Chen, Songyun Tao, Tuochao Chen, Hyunchul Lim, and Cheng Zhang. 2021.
SpeeChin: A smart necklace for silent speech recognition. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 4 (2021), 1-23.
Maozheng Zhao, Henry Huang, Zhi Li, Rui Liu, Wenzhe Cui, Kajal Toshniwal,
Ananya Goel, Andrew Wang, Xia Zhao, Sina Rashidian, et al. 2022. Eyesaycor-
rect: Eye gaze and voice based hands-free text correction for mobile devices.
In Proceedings of the 27th International Conference on Intelligent User Interfaces.
470-482.



	Abstract
	1 Introduction
	2 Related Work
	2.1 Text entry techniques on mobile devices
	2.2 Silent Speech Recognition Interfaces and Methods

	3 Initials Conditioned LLM for Visual Speech Recognition
	3.1 Model Architecture
	3.2 Lip-reading Datasets and Training Details
	3.3 Offline Model Evaluation

	4 LipType: Multimodal Input Method using Silent Speech and Typing
	4.1 Subvocalize-as-you-type
	4.2 Initials-constrained Beam Search
	4.3 Editing with Candidate Suggestions and Auto-correction

	5 User Study
	5.1 Apparatus and Participants
	5.2 Procedure
	5.3 Quantitative Measures and Results
	5.4 NASA TLX Ratings
	5.5 System Usability Scale Scores and Subjective Feedback

	6 Discussion, Limitations, and Future Work
	6.1 The Future of Silent Speech for Text Entry
	6.2 Recognition with Fuzzy Word Initials and Numbers
	6.3 Longitudinal and In-the-wild Study

	7 Conclusion
	Acknowledgments
	references

